High Photoresponsivity in Graphene Nanoribbon Field-Effect Transistor Devices Contacted with Graphene Electrodes

被引:45
|
作者
Candini, Andrea [1 ]
Martini, Leonardo [1 ,2 ]
Chen, Zongping [3 ]
Mishra, Neeraj [4 ]
Convertino, Domenica [4 ,5 ]
Coletti, Camilla [4 ,6 ]
Narita, Akimitsu [3 ]
Feng, Xinliang [7 ,8 ]
Muellen, Klaus [3 ]
Affronte, Marco [1 ,2 ]
机构
[1] CNR, Ist Nanosci, Ctr S3, Via G Campi 213-A, I-41125 Modena, Italy
[2] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Matemat & Informat, Via G Campi 213-A, I-41125 Modena, Italy
[3] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[4] Ist Italiano Tecnol, Ctr Nanotechnol Innovat NEST, Piazza San Silvestro 12, I-56127 Pisa, Italy
[5] Scuola Normale Super Pisa, NEST, Piazza San Silvestro 12, I-56127 Pisa, Italy
[6] Ist Italiano Tecnol, Graphene Labs, Via Morego 30, I-16163 Genoa, Italy
[7] Tech Univ Dresden, Ctr Adv Elect Dresden Cfaed, D-01062 Dresden, Germany
[8] Tech Univ Dresden, Dept Chem & Food Chem, D-01062 Dresden, Germany
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2017年 / 121卷 / 19期
关键词
CHEMICAL-VAPOR-DEPOSITION; EPITAXIAL GRAPHENE; CARBON NANOTUBES; PHOTODETECTORS; PHOTOTRANSISTORS; HETEROJUNCTIONS; MOS2; GAIN;
D O I
10.1021/acs.jpcc.7b03401
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ultranarrow graphene nanoribbons (GNRs) with atomically precise structures are considered a promising class of materials for the realization of optoelectronic and photonic devices with improved functionalities. Here we report the optoelectronic characterization of a field-effect transistor device made of a layer of bottom-up synthesized GNRs contacted with multilayer graphene electrodes, showing high photoresponsivity of 5 x 10(5) A/W for small incident power in the visible-UV range. Our results show that combining the properties of intrinsic graphene with that of semiconducting GNRs is a viable route to realize novel devices for optoelectronic and sensing applications.
引用
收藏
页码:10620 / 10625
页数:6
相关论文
共 50 条
  • [11] Locally Defect-Engineered Graphene Nanoribbon Field-Effect Transistor
    Owlia, Hadi
    Keshavarzi, Parviz
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2016, 63 (09) : 3769 - 3775
  • [12] The Sub-Band Effect on the Graphene Nanoribbon Based Field-Effect Transistor
    Kiat, Wong King
    Ahmadi, M. Taghi
    Ismail, Razali
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2012, 7 (04) : 361 - 365
  • [13] Graphene nanoribbon field-effect transistors
    Thornhill, Stephen
    Wu, Nathanael
    Wang, Z. F.
    Shi, Q. W.
    Chen, Jie
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-10, 2008, : 169 - +
  • [14] CHANNEL CONDUCTANCE OF ABA STACKING TRILAYER GRAPHENE NANORIBBON FIELD-EFFECT TRANSISTOR
    Sadeghi, Hatef
    Ahmadi, M. T.
    Mousavi, S. M.
    Ismail, Razali
    MODERN PHYSICS LETTERS B, 2012, 26 (08):
  • [15] Fabrication and Characterization of an Epitaxial Graphene Nanoribbon-Based Field-Effect Transistor
    Meng, Nan
    Fernandez, J. Ferrer
    Vignaud, Dominique
    Dambrine, Gilles
    Happy, Henri
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (06) : 1594 - 1596
  • [16] Transport properties of B/P doped graphene nanoribbon field-effect transistor
    Rui, Chenkang
    Shao, Cheng
    Liu, Jiaxu
    Chen, Aqing
    Zhu, Kaigui
    Shao, Qingyi
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2021, 130
  • [17] Current-voltage characteristics of a graphene-nanoribbon field-effect transistor
    Ryzhii, V.
    Ryzhii, M.
    Satou, A.
    Otsuji, T.
    Journal of Applied Physics, 2008, 103 (09):
  • [18] Current-voltage characteristics of a graphene-nanoribbon field-effect transistor
    Ryzhii, V.
    Ryzhii, M.
    Satou, A.
    Otsuji, T.
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (09)
  • [19] A bilayer graphene nanoribbon field-effect transistor with a dual-material gate
    Owlia, Hadi
    Keshavarzi, Parviz
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2015, 39 : 636 - 640
  • [20] Graphene Nanoribbon Tunnel Field-Effect Transistor via Segmented Edge Saturation
    Lv, Yawei
    Qin, Wenjing
    Huang, Qijun
    Chang, Sheng
    Wang, Hao
    He, Jin
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (06) : 2694 - 2701