Macdonald processes, quantum integrable systems and the Kardar-Parisi-Zhang universality class

被引:0
|
作者
Corwin, Ivan [1 ,2 ,3 ,4 ]
机构
[1] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
[2] Clay Math Inst, Providence, RI 02903 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] Inst Poincare, F-75005 Paris, France
关键词
KPZ; symmetric polynomials; quantum integrable systems; Bethe ansatz; TASEP; FREE-ENERGY; POLYMER; FLUCTUATIONS; TURBULENCE; EQUATION; BEHAVIOR;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Integrable probability has emerged as an active area of research at the interface of probability/mathematical physics/statistical mechanics on the one hand, and representation theory/integrable systems on the other. Informally, integrable probabilistic systems have two properties: (1) It is possible to write down concise and exact formulas for expectations of a variety of interesting observables (or functions) of the system. (2) Asymptotics of the system and associated exact formulas provide access to exact descriptions of the properties and statistics of large universality classes and universal scaling limits for disordered systems. We focus here on examples of integrable probabilistic systems related to the Kardar-Parisi-Zhang (KPZ) universality class and explain how their integrability stems from connections with symmetric function theory and quantum integrable systems.
引用
收藏
页码:1007 / 1034
页数:28
相关论文
共 50 条
  • [21] Anomalous scaling in a nonlocal growth model in the Kardar-Parisi-Zhang universality class
    Castro, M
    Cuerno, R
    Sanchez, A
    Dominguez-Adame, F
    PHYSICAL REVIEW E, 1998, 57 (03) : R2491 - R2494
  • [22] From cellular automata to growth dynamics: The Kardar-Parisi-Zhang universality class
    Gomes, Waldenor P.
    Penna, Andre L. A.
    Oliveira, Fernando A.
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [23] Kardar-Parisi-Zhang universality from soft gauge modes
    Bulchandani, Vir B.
    PHYSICAL REVIEW B, 2020, 101 (04)
  • [24] Universality in two-dimensional Kardar-Parisi-Zhang growth
    Reis, FDAA
    PHYSICAL REVIEW E, 2004, 69 (02)
  • [25] Kardar-Parisi-Zhang universality of the Nagel-Schreckenberg model
    de Gier, Jan
    Schadschneider, Andreas
    Schmidt, Johannes
    Schuetz, Gunter M.
    PHYSICAL REVIEW E, 2019, 100 (05)
  • [26] Numerical estimate of the Kardar-Parisi-Zhang universality class in (2+1) dimensions
    Pagnani, Andrea
    Parisi, Giorgio
    PHYSICAL REVIEW E, 2015, 92 (01):
  • [27] Kardar-Parisi-Zhang universality class for the critical dynamics of reaction-diffusion fronts
    Barreales, B. G.
    Melendez, J. J.
    Cuerno, R.
    Ruiz-Lorenzo, J. J.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (02):
  • [28] Quantum gas microscopy of Kardar-Parisi-Zhang superdiffusion
    Wei, David
    Rubio-Abadal, Antonio
    Ye, Bingtian
    Machado, Francisco
    Kemp, Jack
    Srakaew, Kritsana
    Hollerith, Simon
    Rui, Jun
    Gopalakrishnan, Sarang
    Yao, Norman Y.
    Bloch, Immanuel
    Zeiher, Johannes
    SCIENCE, 2022, 376 (6594) : 716 - +
  • [29] Stochastic model in the Kardar-Parisi-Zhang universality class with minimal finite size effects
    Ghaisas, SV
    PHYSICAL REVIEW E, 2006, 73 (02): : 1 - 4
  • [30] The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class
    Sasamoto, Tomohiro
    Spohn, Herbert
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,