Macdonald processes, quantum integrable systems and the Kardar-Parisi-Zhang universality class

被引:0
|
作者
Corwin, Ivan [1 ,2 ,3 ,4 ]
机构
[1] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
[2] Clay Math Inst, Providence, RI 02903 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] Inst Poincare, F-75005 Paris, France
关键词
KPZ; symmetric polynomials; quantum integrable systems; Bethe ansatz; TASEP; FREE-ENERGY; POLYMER; FLUCTUATIONS; TURBULENCE; EQUATION; BEHAVIOR;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Integrable probability has emerged as an active area of research at the interface of probability/mathematical physics/statistical mechanics on the one hand, and representation theory/integrable systems on the other. Informally, integrable probabilistic systems have two properties: (1) It is possible to write down concise and exact formulas for expectations of a variety of interesting observables (or functions) of the system. (2) Asymptotics of the system and associated exact formulas provide access to exact descriptions of the properties and statistics of large universality classes and universal scaling limits for disordered systems. We focus here on examples of integrable probabilistic systems related to the Kardar-Parisi-Zhang (KPZ) universality class and explain how their integrability stems from connections with symmetric function theory and quantum integrable systems.
引用
收藏
页码:1007 / 1034
页数:28
相关论文
共 50 条
  • [31] Kardar-Parisi-Zhang Physics in the Quantum Heisenberg Magnet
    Ljubotina, Marko
    Znidaric, Marko
    Prosen, Tomaz
    PHYSICAL REVIEW LETTERS, 2019, 122 (21)
  • [32] Patterns in the Kardar-Parisi-Zhang equation
    Fogedby, Hans C.
    PRAMANA-JOURNAL OF PHYSICS, 2008, 71 (02): : 253 - 262
  • [33] Universality of fluctuations in the Kardar-Parisi-Zhang class in high dimensions and its upper critical dimension
    Alves, S. G.
    Oliveira, T. J.
    Ferreira, S. C.
    PHYSICAL REVIEW E, 2014, 90 (02):
  • [34] Kardar-Parisi-Zhang universality in a one-dimensional polariton condensate
    Fontaine, Quentin
    Squizzato, Davide
    Baboux, Florent
    Amelio, Ivan
    Lemaitre, Aristide
    Morassi, Martina
    Sagnes, Isabelle
    Le Gratiet, Luc
    Harouri, Abdelmounaim
    Wouters, Michiel
    Carusotto, Iacopo
    Amo, Alberto
    Richard, Maxime
    Minguzzi, Anna
    Canet, Leonie
    Ravets, Sylvain
    Bloch, Jacqueline
    NATURE, 2022, 608 (7924) : 687 - +
  • [35] Patterns in the Kardar-Parisi-Zhang equation
    Hans C. Fogedby
    Pramana, 2008, 71 : 253 - 262
  • [36] Persistence of Kardar-Parisi-Zhang interfaces
    Kallabis, H
    Krug, J
    EUROPHYSICS LETTERS, 1999, 45 (01): : 20 - 25
  • [37] Kardar-Parisi-Zhang universality class in the synchronization of oscillator lattices with time-dependent noise
    Gutierrez, Ricardo
    Cuerno, Rodolfo
    PHYSICAL REVIEW E, 2024, 110 (05)
  • [38] GENERALIZATIONS OF THE KARDAR-PARISI-ZHANG EQUATION
    DOHERTY, JP
    MOORE, MA
    KIM, JM
    BRAY, AJ
    PHYSICAL REVIEW LETTERS, 1994, 72 (13) : 2041 - 2044
  • [39] ON THE RENORMALIZATION OF THE KARDAR-PARISI-ZHANG EQUATION
    LASSIG, M
    NUCLEAR PHYSICS B, 1995, 448 (03) : 559 - 574
  • [40] A modified Kardar-Parisi-Zhang model
    Da Prato, Giuseppe
    Debussche, Arnaud
    Tubaro, Luciano
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 442 - 453