Stochastic model in the Kardar-Parisi-Zhang universality class with minimal finite size effects

被引:18
|
作者
Ghaisas, SV [1 ]
机构
[1] Univ Poona, Dept Elect Sci, Pune 411007, Maharashtra, India
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevE.73.022601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a solid-on-solid lattice model for growth with conditional evaporation. A measure of finite size effects is obtained by observing the time invariance of distribution of local height fluctuations. The model parameters are chosen so that the change in the distribution in time is minimum. On a one-dimensional substrate the results obtained from the model for the roughness exponent alpha from three different methods are same as predicted for the Kardar-Parisi-Zhang equation. One of the unique features of the model is that alpha as obtained from the structure factor S(k,t) for the one-dimensional substrate growth exactly matches the predicted value of 0.5 within statistical errors. The model can be defined in any dimensions. We have obtained results for this model on two- and three-dimensional substrates.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [1] THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS
    Corwin, Ivan
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (01)
  • [2] Topology and the Kardar-Parisi-Zhang universality class
    Santalla, Silvia N.
    Rodriguez-Laguna, Javier
    Celi, Alessio
    Cuerno, Rodolfo
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [3] THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS
    Quastel, J. D.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 113 - 133
  • [4] Random geometry and the Kardar-Parisi-Zhang universality class
    Santalla, Silvia N.
    Rodriguez-Laguna, Javier
    LaGatta, Tom
    Cuerno, Rodolfo
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [5] Dimensional fragility of the Kardar-Parisi-Zhang universality class
    Nicoli, Matteo
    Cuerno, Rodolfo
    Castro, Mario
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [6] 1 Kardar-Parisi-Zhang universality class of a discrete erosion model
    Nath, Palash
    Mandal, Pradipta Kumar
    Jana, Debnarayan
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2015, 26 (05):
  • [7] Kardar-Parisi-Zhang Equation and Universality
    Comets, Francis
    DIRECTED POLYMERS IN RANDOM ENVIRONMENTS: ECOLE D ETE DE PROBABILITES DE SAINT-FLOUR XLVI - 2016, 2017, 2175 : 127 - 146
  • [8] An appetizer to modern developments on the Kardar-Parisi-Zhang universality class
    Takeuchi, Kazumasa A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 504 : 77 - 105
  • [9] Universality classes in the anisotropic Kardar-Parisi-Zhang model
    Täuber, UC
    Frey, E
    EUROPHYSICS LETTERS, 2002, 59 (05): : 655 - 661
  • [10] Kardar-Parisi-Zhang universality class and the anchored Toom interface
    Barkema, G. T.
    Ferrari, P. L.
    Lebowitz, J. L.
    Spohn, H.
    PHYSICAL REVIEW E, 2014, 90 (04):