Stochastic model in the Kardar-Parisi-Zhang universality class with minimal finite size effects

被引:18
|
作者
Ghaisas, SV [1 ]
机构
[1] Univ Poona, Dept Elect Sci, Pune 411007, Maharashtra, India
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevE.73.022601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a solid-on-solid lattice model for growth with conditional evaporation. A measure of finite size effects is obtained by observing the time invariance of distribution of local height fluctuations. The model parameters are chosen so that the change in the distribution in time is minimum. On a one-dimensional substrate the results obtained from the model for the roughness exponent alpha from three different methods are same as predicted for the Kardar-Parisi-Zhang equation. One of the unique features of the model is that alpha as obtained from the structure factor S(k,t) for the one-dimensional substrate growth exactly matches the predicted value of 0.5 within statistical errors. The model can be defined in any dimensions. We have obtained results for this model on two- and three-dimensional substrates.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [31] The 1+1-dimensional Kardar-Parisi-Zhang equation and its universality class
    Sasamoto, Tomohiro
    Spohn, Herbert
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [32] Patterns in the Kardar-Parisi-Zhang equation
    Fogedby, Hans C.
    PRAMANA-JOURNAL OF PHYSICS, 2008, 71 (02): : 253 - 262
  • [33] Universality of fluctuations in the Kardar-Parisi-Zhang class in high dimensions and its upper critical dimension
    Alves, S. G.
    Oliveira, T. J.
    Ferreira, S. C.
    PHYSICAL REVIEW E, 2014, 90 (02):
  • [34] Nonlocal effects in the conserved Kardar-Parisi-Zhang equation
    Jung, Y
    Kim, IM
    PHYSICAL REVIEW E, 2000, 62 (02): : 2949 - 2951
  • [35] Large deviation function for the Eden model and universality within the one-dimensional Kardar-Parisi-Zhang class
    Appert, C
    PHYSICAL REVIEW E, 2000, 61 (02): : 2092 - 2094
  • [36] CROSSOVER AND FINITE-SIZE EFFECTS IN THE (1 + 1)-DIMENSIONAL KARDAR-PARISI-ZHANG EQUATION
    FORREST, BM
    TORAL, R
    JOURNAL OF STATISTICAL PHYSICS, 1993, 70 (3-4) : 703 - 720
  • [37] Kardar-Parisi-Zhang universality in a one-dimensional polariton condensate
    Fontaine, Quentin
    Squizzato, Davide
    Baboux, Florent
    Amelio, Ivan
    Lemaitre, Aristide
    Morassi, Martina
    Sagnes, Isabelle
    Le Gratiet, Luc
    Harouri, Abdelmounaim
    Wouters, Michiel
    Carusotto, Iacopo
    Amo, Alberto
    Richard, Maxime
    Minguzzi, Anna
    Canet, Leonie
    Ravets, Sylvain
    Bloch, Jacqueline
    NATURE, 2022, 608 (7924) : 687 - +
  • [38] Large deviation function for the Eden model and universality within the one-dimensional Kardar-Parisi-Zhang class
    Appert, C.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (02): : 2092 - 2094
  • [39] Patterns in the Kardar-Parisi-Zhang equation
    Hans C. Fogedby
    Pramana, 2008, 71 : 253 - 262
  • [40] Persistence of Kardar-Parisi-Zhang interfaces
    Kallabis, H
    Krug, J
    EUROPHYSICS LETTERS, 1999, 45 (01): : 20 - 25