Stochastic model in the Kardar-Parisi-Zhang universality class with minimal finite size effects

被引:18
|
作者
Ghaisas, SV [1 ]
机构
[1] Univ Poona, Dept Elect Sci, Pune 411007, Maharashtra, India
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevE.73.022601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a solid-on-solid lattice model for growth with conditional evaporation. A measure of finite size effects is obtained by observing the time invariance of distribution of local height fluctuations. The model parameters are chosen so that the change in the distribution in time is minimum. On a one-dimensional substrate the results obtained from the model for the roughness exponent alpha from three different methods are same as predicted for the Kardar-Parisi-Zhang equation. One of the unique features of the model is that alpha as obtained from the structure factor S(k,t) for the one-dimensional substrate growth exactly matches the predicted value of 0.5 within statistical errors. The model can be defined in any dimensions. We have obtained results for this model on two- and three-dimensional substrates.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [21] Fragility of Kardar-Parisi-Zhang universality class in the presence of temporally correlated noise
    Rodriguez-Fernandez, Enrique
    Ales, Alejandro
    Martin-alvarez, Jorge
    Lopez, Juan M.
    PHYSICAL REVIEW E, 2024, 110 (02)
  • [22] Macdonald processes, quantum integrable systems and the Kardar-Parisi-Zhang universality class
    Corwin, Ivan
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 1007 - 1034
  • [23] Hallmarks of the Kardar-Parisi-Zhang universality class elicited by scanning probe microscopy
    Alves, Sidiney G.
    de Araujo, Clodoaldo I. L.
    Ferreira, Silvio C.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [24] From cellular automata to growth dynamics: The Kardar-Parisi-Zhang universality class
    Gomes, Waldenor P.
    Penna, Andre L. A.
    Oliveira, Fernando A.
    PHYSICAL REVIEW E, 2019, 100 (02)
  • [25] Extremal paths, the stochastic heat equation, and the three-dimensional Kardar-Parisi-Zhang universality class
    Halpin-Healy, Timothy
    PHYSICAL REVIEW E, 2013, 88 (04):
  • [26] Kardar-Parisi-Zhang universality from soft gauge modes
    Bulchandani, Vir B.
    PHYSICAL REVIEW B, 2020, 101 (04)
  • [27] Universality in two-dimensional Kardar-Parisi-Zhang growth
    Reis, FDAA
    PHYSICAL REVIEW E, 2004, 69 (02)
  • [28] Numerical estimate of the Kardar-Parisi-Zhang universality class in (2+1) dimensions
    Pagnani, Andrea
    Parisi, Giorgio
    PHYSICAL REVIEW E, 2015, 92 (01):
  • [29] Kardar-Parisi-Zhang universality class for the critical dynamics of reaction-diffusion fronts
    Barreales, B. G.
    Melendez, J. J.
    Cuerno, R.
    Ruiz-Lorenzo, J. J.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (02):
  • [30] Kardar-Parisi-Zhang scaling in the Hubbard model
    Moca, Caetaelin Pascu
    Werner, Miklos Antal
    Valli, Angelo
    Prosen, Tomaz
    Zarand, Gergely
    PHYSICAL REVIEW B, 2023, 108 (23)