Macdonald processes, quantum integrable systems and the Kardar-Parisi-Zhang universality class

被引:0
|
作者
Corwin, Ivan [1 ,2 ,3 ,4 ]
机构
[1] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
[2] Clay Math Inst, Providence, RI 02903 USA
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] Inst Poincare, F-75005 Paris, France
关键词
KPZ; symmetric polynomials; quantum integrable systems; Bethe ansatz; TASEP; FREE-ENERGY; POLYMER; FLUCTUATIONS; TURBULENCE; EQUATION; BEHAVIOR;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Integrable probability has emerged as an active area of research at the interface of probability/mathematical physics/statistical mechanics on the one hand, and representation theory/integrable systems on the other. Informally, integrable probabilistic systems have two properties: (1) It is possible to write down concise and exact formulas for expectations of a variety of interesting observables (or functions) of the system. (2) Asymptotics of the system and associated exact formulas provide access to exact descriptions of the properties and statistics of large universality classes and universal scaling limits for disordered systems. We focus here on examples of integrable probabilistic systems related to the Kardar-Parisi-Zhang (KPZ) universality class and explain how their integrability stems from connections with symmetric function theory and quantum integrable systems.
引用
收藏
页码:1007 / 1034
页数:28
相关论文
共 50 条
  • [1] THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS
    Corwin, Ivan
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (01)
  • [2] Topology and the Kardar-Parisi-Zhang universality class
    Santalla, Silvia N.
    Rodriguez-Laguna, Javier
    Celi, Alessio
    Cuerno, Rodolfo
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [3] THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS
    Quastel, J. D.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 113 - 133
  • [4] Universal Kardar-Parisi-Zhang Dynamics in Integrable Quantum Systems
    Ye, Bingtian
    Machado, Francisco
    Kemp, Jack
    Hutson, Ross B.
    Yao, Norman Y.
    PHYSICAL REVIEW LETTERS, 2022, 129 (23)
  • [5] Random geometry and the Kardar-Parisi-Zhang universality class
    Santalla, Silvia N.
    Rodriguez-Laguna, Javier
    LaGatta, Tom
    Cuerno, Rodolfo
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [6] Dimensional fragility of the Kardar-Parisi-Zhang universality class
    Nicoli, Matteo
    Cuerno, Rodolfo
    Castro, Mario
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [7] Kardar-Parisi-Zhang Equation and Universality
    Comets, Francis
    DIRECTED POLYMERS IN RANDOM ENVIRONMENTS: ECOLE D ETE DE PROBABILITES DE SAINT-FLOUR XLVI - 2016, 2017, 2175 : 127 - 146
  • [8] An appetizer to modern developments on the Kardar-Parisi-Zhang universality class
    Takeuchi, Kazumasa A.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 504 : 77 - 105
  • [9] Kardar-Parisi-Zhang universality class and the anchored Toom interface
    Barkema, G. T.
    Ferrari, P. L.
    Lebowitz, J. L.
    Spohn, H.
    PHYSICAL REVIEW E, 2014, 90 (04):
  • [10] Mirror symmetry breakdown in the Kardar-Parisi-Zhang universality class
    Schmidt, Johannes
    Schadschneider, Andreas
    PHYSICAL REVIEW E, 2024, 110 (02)