Dynamics of deformed Henon-like map

被引:0
|
作者
Gupta, Divya [1 ]
Chandramouli, V. V. M. S. [1 ]
机构
[1] Indian Inst Technol Jodhpur, Dept Math, Jodhpur 342037, Rajasthan, India
关键词
Deformed Henon-like map; Superstable periodic points; Heteroclinic bifurcation; Renormalization; Cantor attractor; RENORMALIZATION; UNIVERSALITY; ATTRACTORS; FAMILY;
D O I
10.1016/j.chaos.2021.111760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A B S T R A C T In this paper, we introduce q-deformation on Henon-like maps and discuss various dynamical properties of newly deformed system, named as q-Henon map. We describe a method for the construction of superstable periodic cycles and their accumulation on the parameter space for different deformed parameters. At the accumulation, the q-Henon map undergoes transition from periodic to chaotic behaviour. For restricted range of q , we achieve chaos prior to the canonical Henon-like maps. This leads to the paradoxical behaviour. Further, we use the concept of heteroclinic web to discuss the heteroclinic bifurcation and the Cantor attractor of infinitely renormalizable q-Henon maps. Finally, we show that the basin of attraction of q-Henon maps do not have an escaping region for a particular set of deformed parameters.(c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Three-dimensional Henon-like maps and wild Lorenz-like attractors
    Gonchenko, SV
    Ovsyannikov, II
    Simó, C
    Turaev, D
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (11): : 3493 - 3508
  • [42] Equilibrium Measures at Temperature Zero for Henon-Like Maps at the First Bifurcation
    Takahasi, Hiroki
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (01): : 106 - 124
  • [43] DYNAMICAL BEHAVIOR OF q-DEFORMED HENON MAP
    Patidar, Vinod
    Purohit, G.
    Sud, K. K.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (05): : 1349 - 1356
  • [44] Dynamics of deformed Hénon-like map
    Gupta, Divya
    Chandramouli, V.V.M.S.
    [J]. Chaos, Solitons and Fractals, 2022, 155
  • [45] REMARKS ON THE SYMBOLIC DYNAMICS FOR THE HENON MAP
    HANSEN, KT
    [J]. PHYSICS LETTERS A, 1992, 165 (02) : 100 - 104
  • [46] Gradient Control of Henon Map Dynamics
    Guzenko, P. Y.
    Fradkov, A. L.
    [J]. International Journal of Bifurcations and Chaos in Applied Sciences and Engineering, 7 (03):
  • [47] Complex Dynamics in Generalized Henon Map
    Cai, Meixiang
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [48] Arithmetical signatures of the dynamics of the Henon map
    Endler, AN
    Gallas, JAC
    [J]. PHYSICAL REVIEW E, 2002, 65 (03): : 1 - 036231
  • [49] Gradient control of Henon map dynamics
    Guzenko, PY
    Fradkov, AL
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (03): : 701 - 705
  • [50] Dynamics of the Henon Map in the Digital Domain
    Galias, Zbigniew
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2023, 70 (01) : 388 - 398