Dynamics of deformed Henon-like map

被引:1
|
作者
Gupta, Divya [1 ]
Chandramouli, V. V. M. S. [1 ]
机构
[1] Indian Inst Technol Jodhpur, Dept Math, Jodhpur 342037, Rajasthan, India
关键词
Deformed Henon-like map; Superstable periodic points; Heteroclinic bifurcation; Renormalization; Cantor attractor; RENORMALIZATION; UNIVERSALITY; ATTRACTORS; FAMILY;
D O I
10.1016/j.chaos.2021.111760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A B S T R A C T In this paper, we introduce q-deformation on Henon-like maps and discuss various dynamical properties of newly deformed system, named as q-Henon map. We describe a method for the construction of superstable periodic cycles and their accumulation on the parameter space for different deformed parameters. At the accumulation, the q-Henon map undergoes transition from periodic to chaotic behaviour. For restricted range of q , we achieve chaos prior to the canonical Henon-like maps. This leads to the paradoxical behaviour. Further, we use the concept of heteroclinic web to discuss the heteroclinic bifurcation and the Cantor attractor of infinitely renormalizable q-Henon maps. Finally, we show that the basin of attraction of q-Henon maps do not have an escaping region for a particular set of deformed parameters.(c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] THE DYNAMICS OF THE HENON MAP
    BENEDICKS, M
    CARLESON, L
    ANNALS OF MATHEMATICS, 1991, 133 (01) : 73 - 169
  • [32] ABUNDANCE OF NON-UNIFORMLY HYPERBOLIC HENON-LIKE ENDOMORPHISMS
    Berger, Pierre
    ASTERISQUE, 2019, (410) : 53 - 177
  • [33] Filled Julia set of some class of Henon-like maps
    Caprio, Danilo Antonio
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2020, 35 (01): : 156 - 183
  • [34] The density of the transversal homoclinic points in the Henon-like strange attractors
    Cao, YL
    Kiriki, S
    CHAOS SOLITONS & FRACTALS, 2002, 13 (04) : 665 - 671
  • [35] Densely branching trees as models for Henon-like and Lozi-like attractors
    Boronski, J.
    Stimac, S.
    ADVANCES IN MATHEMATICS, 2023, 429
  • [36] Henon-Like Families and Blender-Horseshoes at Nontransverse Heterodimensional Cycles
    Diaz, Lorenzo J.
    Perez, Sebastian A.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (03):
  • [37] Chaotic invariant sets of high-dimensional Henon-like maps
    Qin, WX
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 264 (01) : 76 - 84
  • [38] ON THE SYMBOLIC DYNAMICS OF THE HENON MAP
    GRASSBERGER, P
    KANTZ, H
    MOENIG, U
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (24): : 5217 - 5230
  • [39] Blenders in centre unstable Henon-like families: with an application to heterodimensional bifurcations
    Diaz, Lorenzo J.
    Kiriki, Shin
    Shinohara, Katsutoshi
    NONLINEARITY, 2014, 27 (03) : 353 - 378
  • [40] A quantitative bifurcation analysis of Henon-like 2D maps
    Polymilis, C
    Servizi, G
    Skokos, C
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1997, 66 (04): : 365 - 385