Dynamics of deformed Henon-like map

被引:1
|
作者
Gupta, Divya [1 ]
Chandramouli, V. V. M. S. [1 ]
机构
[1] Indian Inst Technol Jodhpur, Dept Math, Jodhpur 342037, Rajasthan, India
关键词
Deformed Henon-like map; Superstable periodic points; Heteroclinic bifurcation; Renormalization; Cantor attractor; RENORMALIZATION; UNIVERSALITY; ATTRACTORS; FAMILY;
D O I
10.1016/j.chaos.2021.111760
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A B S T R A C T In this paper, we introduce q-deformation on Henon-like maps and discuss various dynamical properties of newly deformed system, named as q-Henon map. We describe a method for the construction of superstable periodic cycles and their accumulation on the parameter space for different deformed parameters. At the accumulation, the q-Henon map undergoes transition from periodic to chaotic behaviour. For restricted range of q , we achieve chaos prior to the canonical Henon-like maps. This leads to the paradoxical behaviour. Further, we use the concept of heteroclinic web to discuss the heteroclinic bifurcation and the Cantor attractor of infinitely renormalizable q-Henon maps. Finally, we show that the basin of attraction of q-Henon maps do not have an escaping region for a particular set of deformed parameters.(c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Renormalizable Henon-like maps and unbounded geometry
    Hazard, P. E.
    Lyubich, M.
    Martens, M.
    NONLINEARITY, 2012, 25 (02) : 397 - 420
  • [22] Henon-like maps with arbitrary stationary combinatorics
    Hazard, P. E.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 : 1391 - 1443
  • [23] Attractors and Commutation Sets in Henon-like Diffeomorphisms
    Selmani, Wissame
    Idjellit, Ilham
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (04): : 9 - 21
  • [24] Examples of Lorenz-like Attractors in Henon-like Maps
    Gonchenko, S. V.
    Gonchenko, A. S.
    Ovsyannikov, I. I.
    Turaev, D. V.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2013, 8 (05) : 48 - 70
  • [25] Lyapunov spectrum for Henon-like maps at the first bifurcation
    Takahasi, Hiroki
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 : 1168 - 1200
  • [26] A Henon-like map inspired by the generalized discrete-time FitzHugh-Nagumo model
    Zhan, Feibiao
    Liu, Shenquan
    NONLINEAR DYNAMICS, 2019, 97 (04) : 2675 - 2691
  • [27] BLENDERS FOR A NON-NORMALLY HENON-LIKE FAMILY
    Kiriki, Shin
    Nakajima, Masaki
    TAMKANG JOURNAL OF MATHEMATICS, 2010, 41 (02): : 149 - 166
  • [28] Basin problem for Henon-like attractors in arbitrary dimensions
    Horita, V
    Muniz, N
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 15 (02) : 481 - 504
  • [29] Birkhoff spectrum for Henon-like maps at the first bifurcation
    Takahasi, Hiroki
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2016, 31 (01): : 41 - 59
  • [30] Random perturbations and statistical properties of Henon-like maps
    Benedicks, Michael
    Viana, Marcelo
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05): : 713 - 752