Monte Carlo methods for Bayesian analysis of constrained parameter problems

被引:15
|
作者
Chen, MH
Shao, QM
机构
[1] Worcester Polytech Inst, Dept Math Sci, Worcester, MA 01609 USA
[2] Univ Oregon, Dept Math, Eugene, OR 97404 USA
基金
美国国家科学基金会;
关键词
Bayesian computation; Bayesian hierarchical model; Gibbs sampling; marginal posterior density estimation;
D O I
10.1093/biomet/85.1.73
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Constraints on the parameters in a Bayesian hierarchical model typically make Bayesian computation and analysis complicated. Posterior densities that contain analytically intractable integrals as normalising constants depending on the hyperparameters often make implementation of Gibbs sampling or the Metropolis algorithms difficult. By, using reweighting mixtures (Geyer, 1995), we develop alternative simulation-based methods to determine properties of the desired Bayesian posterior distribution. Necessary theory and two illustrative examples are provided.
引用
收藏
页码:73 / 87
页数:15
相关论文
共 50 条
  • [1] Sequential Monte Carlo methods for Bayesian elliptic inverse problems
    Beskos, Alexandros
    Jasra, Ajay
    Muzaffer, Ege A.
    Stuart, Andrew M.
    STATISTICS AND COMPUTING, 2015, 25 (04) : 727 - 737
  • [2] Sequential Monte Carlo methods for Bayesian elliptic inverse problems
    Alexandros Beskos
    Ajay Jasra
    Ege A. Muzaffer
    Andrew M. Stuart
    Statistics and Computing, 2015, 25 : 727 - 737
  • [3] An introduction to Monte Carlo methods for Bayesian data analysis
    Andrieu, C
    Doucet, A
    Fitzgerald, WJ
    NONLINEAR DYNAMICS AND STATISTICS, 2001, : 169 - 217
  • [4] Bayesian statistics and Monte Carlo methods
    Koch, K. R.
    JOURNAL OF GEODETIC SCIENCE, 2018, 8 (01) : 18 - 29
  • [5] On Monte Carlo methods for Bayesian inference
    Qian, SS
    Stow, CA
    Borsuk, ME
    ECOLOGICAL MODELLING, 2003, 159 (2-3) : 269 - 277
  • [6] ANALYSIS OF SHIELDING PROBLEMS WITH MONTE-CARLO METHODS
    UEKI, K
    RYUFUKU, H
    JOURNAL OF THE ATOMIC ENERGY SOCIETY OF JAPAN, 1981, 23 (09): : 632 - 637
  • [7] Quantum Monte Carlo Methods for Constrained Systems
    Wolf, Sarah
    Curotto, Emanuele
    Mella, Massimo
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2014, 114 (10) : 611 - 625
  • [8] Monte Carlo Bayesian methods for quantitative traits
    Lin, SL
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 31 (01) : 89 - 108
  • [9] Bayesian analysis of multivariate survival data using Monte Carlo methods
    Aslanidou, H
    Dey, DK
    Sinha, D
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1998, 26 (01): : 33 - 48
  • [10] Markov Chain Monte Carlo Methods for Bayesian Data Analysis in Astronomy
    Sharma, Sanjib
    ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, VOL 55, 2017, 55 : 213 - 259