Object and Action Classification with Latent Variables

被引:3
|
作者
Bilen, Hakan [1 ]
Namboodiri, Vinay P. [1 ]
Van Gool, Luc J. [1 ]
机构
[1] Katholieke Univ Leuven, VISICS, IBBT, ESAT PSI, Leuven, Belgium
关键词
D O I
10.5244/C.25.17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a generic framework to incorporate unobserved auxiliary information for classifying objects and actions. This framework allows us to explicitly account for localisation and alignment of representations for generic object and action classes as latent variables. We approach this problem in the discriminative setting as learning a max-margin classifier that infers the class label along with the latent variables. Through this paper we make the following contributions a) We provide a method for incorporating latent variables into object and action classification b) We specifically account for the presence of an explicit class related subregion which can include foreground and/or background. c) We explore a way to learn a better classifier by iterative expansion of the latent parameter space. We demonstrate the performance of our approach by rigorous experimental evaluation on a number of standard object and action recognition datasets.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Classification of quadratic parastrophically uncancelable functional equations for five object variables on quasigroups
    Koval' R.F.
    Ukrainian Mathematical Journal, 2005, 57 (8) : 1249 - 1261
  • [22] Bacillus anthracis and Coxiella burnetii classification on biomarker latent variables via MALDI MS
    Pierce, Carrie L.
    Woolfitt, Adrian R.
    Moura, Hercules
    Shaw, Edward I.
    Thompson, Herbert A.
    Pavlopoulos, Antonis J.
    Fernandez, Facundo M.
    Barr, John R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [23] Shape group Boltzmann machine for simultaneous object segmentation and action classification
    Zeng, Xunxun
    Chen, Fei
    Wang, Meiqing
    PATTERN RECOGNITION LETTERS, 2018, 111 : 43 - 50
  • [24] Recovering Latent Variables by Matching
    Arellano, Manuel
    Bonhomme, Stephane
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (541) : 693 - 706
  • [25] The theoretical status of latent variables
    Borsboom, D
    Mellenbergh, GJ
    van Heerden, J
    PSYCHOLOGICAL REVIEW, 2003, 110 (02) : 203 - 219
  • [26] PATH MODELS WITH LATENT VARIABLES
    DUPACOVA, J
    EKONOMICKO-MATEMATICKY OBZOR, 1976, 12 (01): : 30 - 43
  • [27] Normality tests for latent variables
    Almuzara, Martin
    Amengual, Dante
    Sentana, Enrique
    QUANTITATIVE ECONOMICS, 2019, 10 (03) : 981 - 1017
  • [28] Latent variables and health research
    Tovar Cuevas, Jose Rafael
    ARCHIVOS DE MEDICINA, 2022, 22 (02): : 332 - 334
  • [29] Nonsparse Learning with Latent Variables
    Zheng, Zemin
    Lv, Jinchi
    Lin, Wei
    OPERATIONS RESEARCH, 2021, 69 (01) : 346 - 359
  • [30] Proper elimination of latent variables
    Polderman, JW
    SYSTEMS & CONTROL LETTERS, 1997, 32 (05) : 261 - 269