Object and Action Classification with Latent Variables

被引:3
|
作者
Bilen, Hakan [1 ]
Namboodiri, Vinay P. [1 ]
Van Gool, Luc J. [1 ]
机构
[1] Katholieke Univ Leuven, VISICS, IBBT, ESAT PSI, Leuven, Belgium
关键词
D O I
10.5244/C.25.17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a generic framework to incorporate unobserved auxiliary information for classifying objects and actions. This framework allows us to explicitly account for localisation and alignment of representations for generic object and action classes as latent variables. We approach this problem in the discriminative setting as learning a max-margin classifier that infers the class label along with the latent variables. Through this paper we make the following contributions a) We provide a method for incorporating latent variables into object and action classification b) We specifically account for the presence of an explicit class related subregion which can include foreground and/or background. c) We explore a way to learn a better classifier by iterative expansion of the latent parameter space. We demonstrate the performance of our approach by rigorous experimental evaluation on a number of standard object and action recognition datasets.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Proper elimination of latent variables
    Polderman, Jan Willem
    Systems and Control Letters, 1997, 32 (05): : 261 - 269
  • [32] Loglinear Models with Latent Variables
    Hershberger, Scott L.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 1995, 2 (02) : 172 - 174
  • [33] Modeling Through Latent Variables
    Verbeke, Geert
    Molenberghs, Geert
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 4, 2017, 4 : 267 - 282
  • [34] Latent variables and the network perspective
    Belzung, Catherine
    de Villemeur, Etienne Billette
    Lemoine, Mael
    Camus, Vincent
    BEHAVIORAL AND BRAIN SCIENCES, 2010, 33 (2-3) : 150 - +
  • [35] Silhouette-based method for object classification and human action recognition in video
    Dedeoglu, Yigithan
    Toreyin, B. Ugur
    Gudukbay, Ugur
    Cetin, A. Enis
    COMPUTER VISION IN HUMAN-COMPUTER INTERACTION, 2006, 3979 : 64 - 77
  • [36] A DEEP LEARNING ARCHITECTURE FOR EPILEPTIC SEIZURE CLASSIFICATION BASED ON OBJECT AND ACTION RECOGNITION
    Karacsony, Tamas
    Loesch-Biffar, Anna Mira
    Vollmar, Christian
    Noachtar, Soheyl
    Silva Cunha, Joao Paulo
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4117 - 4121
  • [37] Similarity Constrained Latent Support Vector Machine: An Application to Weakly Supervised Action Classification
    Shapovalova, Nataliya
    Vahdat, Arash
    Cannons, Kevin
    Lan, Tian
    Mori, Greg
    COMPUTER VISION - ECCV 2012, PT VII, 2012, 7578 : 55 - 68
  • [38] A latent trait and a latent class model for mixed observed variables
    Moustaki, I
    BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 1996, 49 : 313 - 334
  • [39] Sequential imputation for models with latent variables assuming latent ignorability
    Beesley, Lauren J.
    Taylor, Jeremy M. G.
    Little, Roderick J. A.
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2019, 61 (02) : 213 - 233
  • [40] Latent classification models
    Langseth, H
    Nielsen, TD
    MACHINE LEARNING, 2005, 59 (03) : 237 - 265