Recovering Latent Variables by Matching

被引:0
|
作者
Arellano, Manuel [1 ]
Bonhomme, Stephane [2 ]
机构
[1] CEMFI, Madrid, Spain
[2] Univ Chicago, Kenneth C Griffin Dept Econ, Chicago, IL 60637 USA
关键词
Factor models; Income dynamics; Latent variables; Matching; Nonparametric estimation; Optimal transport; DENSITY-ESTIMATION; PANEL-DATA; NONPARAMETRIC DECONVOLUTION; SEMIPARAMETRIC ESTIMATION; MEASUREMENT ERROR; OPTIMAL TRANSPORT; NONLINEAR MODELS; OPTIMAL RATES; EARNINGS; DISTRIBUTIONS;
D O I
10.1080/01621459.2021.1952877
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose an optimal-transport-based matching method to nonparametrically estimate linear models with independent latent variables. The method consists in generating pseudo-observations from the latent variables, so that the Euclidean distance between the model's predictions and their matched counterparts in the data is minimized. We show that our nonparametric estimator is consistent, and we document that it performs well in simulated data. We apply this method to study the cyclicality of permanent and transitory income shocks in the Panel Study of Income Dynamics. We find that the dispersion of income shocks is approximately acyclical, whereas the skewness of permanent shocks is procyclical. By comparison, we find that the dispersion and skewness of shocks to hourly wages vary little with the business cycle. for this article are available online.
引用
收藏
页码:693 / 706
页数:14
相关论文
共 50 条
  • [1] Latent identity variables: Biometric matching without explicit identity estimation
    Prince, Simon J. D.
    Aghajanian, Jania
    Mohammed, Umar
    Sahani, Maneesh
    ADVANCES IN BIOMETRICS, PROCEEDINGS, 2007, 4642 : 424 - +
  • [2] Latent Fingerprint Matching
    Jain, Anil K.
    Feng, Jianjiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (01) : 88 - 100
  • [3] On Matching Latent Fingerprints
    Jain, Anil K.
    Feng, Jianjiang
    Nagar, Abhishek
    Nandakumar, Karthik
    2008 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, VOLS 1-3, 2008, : 1212 - +
  • [4] Latent Palmprint Matching
    Jain, Anil K.
    Feng, Jianjiang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, 31 (06) : 1032 - 1047
  • [5] Symptoms as latent variables
    McFarland, Dennis J.
    Malta, Loretta S.
    BEHAVIORAL AND BRAIN SCIENCES, 2010, 33 (2-3) : 165 - +
  • [6] Matching Patterns with Variables
    Manea, Florin
    Schmid, Markus L.
    COMBINATORICS ON WORDS, WORDS 2019, 2019, 11682 : 1 - 27
  • [7] Should instrumental variables be used as matching variables?
    Wooldridge, Jeffrey M.
    RESEARCH IN ECONOMICS, 2016, 70 (02) : 232 - 237
  • [8] Latent Fingerprint Matching: A Survey
    Sankaran, Anush
    Vatsa, Mayank
    Singh, Richa
    IEEE ACCESS, 2014, 2 : 982 - 1004
  • [9] Deep Latent Graph Matching
    Yu, Tianshu
    Wang, Runzhong
    Yan, Junchi
    Li, Baoxin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [10] The theoretical status of latent variables
    Borsboom, D
    Mellenbergh, GJ
    van Heerden, J
    PSYCHOLOGICAL REVIEW, 2003, 110 (02) : 203 - 219