NARX model selection based on simulation error minimisation and LASSO

被引:27
|
作者
Bonin, M. [1 ]
Seghezza, V. [1 ]
Piroddi, L. [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron & Informaz, I-20133 Milan, Italy
来源
IET CONTROL THEORY AND APPLICATIONS | 2010年 / 4卷 / 07期
关键词
OUTPUT PARAMETRIC MODELS; NON-LINEAR SYSTEMS; IDENTIFICATION; REGRESSION; ALGORITHM; TIME;
D O I
10.1049/iet-cta.2009.0217
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The simulation error minimisation (SEM) approach is very effective for polynomial non-linear autoregressive with exogenous variables (NARX) model selection, but is typically limited to the exploration of candidate regressor sets of limited size because of the computational cost involved in model simulation and the complexity of the empirical structure selection process over large candidate regressor sets. This study investigates the combination of a SEM algorithm for model selection, known as simulation error minimisation with pruning (SEMP), with the least absolute shrinkage and selection operator, which operates a regularisation that balances model accuracy with size in parameter estimation. The combined approach can greatly reduce the computational effort of the SEMP, without significantly affecting its accuracy, and sometimes improve the model selection quality with respect to the plain SEMP.
引用
收藏
页码:1157 / 1168
页数:12
相关论文
共 50 条
  • [41] Controlled variables selection based on lost work minimisation
    Safari, Ayoub
    Eslamloueyan, Reza
    INTERNATIONAL JOURNAL OF EXERGY, 2018, 27 (03) : 334 - 363
  • [42] Detection of dominant points based on noise suppression and error minimisation
    Shearer, M
    Zou, JX
    Third International Conference on Information Technology and Applications, Vol 1, Proceedings, 2005, : 772 - 775
  • [43] Tuning parameter selection for the adaptive LASSO in the autoregressive model
    Kwon, Sunghoon
    Lee, Sangin
    Na, Okyoung
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (02) : 285 - 297
  • [44] Identification of polynomial input/output recursive models with simulation error minimisation methods
    Farina, Marcello
    Piroddi, Luigi
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2012, 43 (02) : 319 - 333
  • [45] Localised kriging parameter optimisation based on absolute error minimisation
    Hundelshaussen, R.
    Costa, J. F. C. L.
    Marques, D. M.
    Bassani, M. A. A.
    APPLIED EARTH SCIENCE-TRANSACTIONS OF THE INSTITUTIONS OF MINING AND METALLURGY, 2018, 127 (04): : 153 - 162
  • [46] Tuning parameter selection for the adaptive LASSO in the autoregressive model
    Sunghoon Kwon
    Sangin Lee
    Okyoung Na
    Journal of the Korean Statistical Society, 2017, 46 : 285 - 297
  • [47] A LASSO-penalized BIC for mixture model selection
    Bhattacharya, Sakyajit
    McNicholas, Paul D.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2014, 8 (01) : 45 - 61
  • [48] Distributionally Robust Formulation and Model Selection for the Graphical Lasso
    Cisneros-Velarde, Pedro
    Oh, Sang-Yun
    Petersen, Alexander
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 756 - 764
  • [49] Effect size and model selection considerations for bootstrapping the lasso
    Laurin, Charles
    Lubke, Gitta
    BEHAVIOR GENETICS, 2013, 43 (06) : 528 - 528
  • [50] A LASSO-penalized BIC for mixture model selection
    Sakyajit Bhattacharya
    Paul D. McNicholas
    Advances in Data Analysis and Classification, 2014, 8 : 45 - 61