共 50 条
A LASSO-penalized BIC for mixture model selection
被引:0
|作者:
Sakyajit Bhattacharya
Paul D. McNicholas
机构:
[1] University of Guelph,Department of Mathematics and Statistics
来源:
关键词:
BIC;
LASSO;
Mixture models;
Model-based clustering;
Model selection;
62F99;
62H30;
62H25;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The efficacy of family-based approaches to mixture model-based clustering and classification depends on the selection of parsimonious models. Current wisdom suggests the Bayesian information criterion (BIC) for mixture model selection. However, the BIC has well-known limitations, including a tendency to overestimate the number of components as well as a proclivity for underestimating, often drastically, the number of components in higher dimensions. While the former problem might be soluble by merging components, the latter is impossible to mitigate in clustering and classification applications. In this paper, a LASSO-penalized BIC (LPBIC) is introduced to overcome this problem. This approach is illustrated based on applications of extensions of mixtures of factor analyzers, where the LPBIC is used to select both the number of components and the number of latent factors. The LPBIC is shown to match or outperform the BIC in several situations.
引用
收藏
页码:45 / 61
页数:16
相关论文