A model selection method based on the adaptive LASSO-penalized GEE and weighted Gaussian pseudo-likelihood BIC in longitudinal robust analysis

被引:1
|
作者
Zhang, Jiamao [1 ]
Xu, Jianwen [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Dept Stat & Actuarial Sci, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive LASSO; correlation structure selection; robust variable selection; Weighted Gaussian pseudo-likelihood; GENERALIZED ESTIMATING EQUATIONS; WORKING-CORRELATION-STRUCTURE; VARIABLE SELECTION; REGRESSION;
D O I
10.1080/03610926.2017.1402047
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, a new robust variable selection approach is introduced by combining the robust generalized estimating equations and adaptive LASSO penalty function for longitudinal generalized linear models. Then, an efficient weighted Gaussian pseudo-likelihood version of the BIC (WGBIC) is proposed to choose the tuning parameter in the process of robust variable selection and to select the best working correlation structure simultaneously. Meanwhile, the oracle properties of the proposed robust variable selection method are established and an efficient algorithm combining the iterative weighted least squares and minorization-maximization is proposed to implement robust variable selection and parameter estimation.
引用
收藏
页码:5779 / 5794
页数:16
相关论文
empty
未找到相关数据