Localised kriging parameter optimisation based on absolute error minimisation

被引:6
|
作者
Hundelshaussen, R. [1 ]
Costa, J. F. C. L. [1 ]
Marques, D. M. [1 ]
Bassani, M. A. A. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Min Engn Dept, 9500 Bento Goncalves Ave,Sect 4,Bldg 75,Room 101, Porto Alegre, RS, Brazil
关键词
Kriging parameters; local optimisation; search neighbourhood;
D O I
10.1080/25726838.2018.1539536
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The definition of the search neighbourhood in kriging can have a significant impact on the resulting estimates. Stationary domains are usually estimated using a unique search strategy for the entire domain. However, the use of a global search neighbourhood ignores the local variations within each domain, i.e. all blocks are interpolated using a unique search strategy. In this paper, localised kriging parameter optimisation (LKPO) is proposed as an alternative methodology that considers the best 'local estimation parameter settings' block by block. The optimisation process is based on absolute error minimisation obtained in cross-validation. Two datasets are presented, the first is a synthetic mineral deposit (2D) and the second is a gold deposit (3D). A wide variety of validation checks show that the use of local kriging parameters significantly improves the grade estimation, obtaining more precise and accurate results than the methodologies currently available in the geostatistical literature.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 50 条
  • [1] Constrained optimisation of soil sampling for minimisation of the kriging variance
    van Groenigen, JW
    Siderius, W
    Stein, A
    GEODERMA, 1999, 87 (3-4) : 239 - 259
  • [2] Gradient based hyper-parameter optimisation for well conditioned kriging metamodels
    Ollar, Jonathan
    Mortished, Charles
    Jones, Royston
    Sienz, Johann
    Toropov, Vassili
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2017, 55 (06) : 2029 - 2044
  • [3] Gradient based hyper-parameter optimisation for well conditioned kriging metamodels
    Jonathan Ollar
    Charles Mortished
    Royston Jones
    Johann Sienz
    Vassili Toropov
    Structural and Multidisciplinary Optimization, 2017, 55 : 2029 - 2044
  • [4] Kriging parameter optimisation: global versus local search strategies
    Fonseca, C. R. A. F.
    Costa, J. F. C. L.
    Hundelshaussen, R.
    Bassani, M. A. A.
    APPLIED EARTH SCIENCE-TRANSACTIONS OF THE INSTITUTIONS OF MINING AND METALLURGY, 2021, 130 (03): : 185 - 196
  • [5] EXPECTED ABSOLUTE ERROR OF THE USUAL ESTIMATOR OF THE BINOMIAL PARAMETER
    BLYTH, CR
    AMERICAN STATISTICIAN, 1980, 34 (03): : 155 - 157
  • [6] Deep Parameter Optimisation on Android Smartphones for Energy Minimisation - A Tale of Woe and a Proof-of-Concept
    Bokhari, Mahmoud A.
    Bruce, Bobby R.
    Alexander, Brad
    Wagner, Markus
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 1501 - 1508
  • [7] Direct optimisation based model selection and parameter estimation using time-domain data for identifying localised nonlinearities
    Safari, Sina
    Monsalve, Julian M. Londono
    JOURNAL OF SOUND AND VIBRATION, 2021, 501 (501)
  • [8] Robust parameter design based on Kriging model
    Ding C.
    Wang J.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2023, 45 (07): : 2269 - 2279
  • [9] WTHD minimisation in hybrid multilevel inverter using biogeographical based optimisation
    Kavitha, R.
    Thottungal, Rani
    ARCHIVES OF ELECTRICAL ENGINEERING, 2014, 63 (02) : 187 - 196
  • [10] Kriging based robust optimisation algorithm for minimax problems in electromagnetics
    Li, Yinjiang
    Rotaru, Mihai
    Sykulski, Jan K.
    ARCHIVES OF ELECTRICAL ENGINEERING, 2016, 65 (04) : 843 - 854