Uncertainty Principles for the Clifford-Fourier Transform

被引:3
|
作者
El Kamel, Jamel [1 ]
Jday, Rim [2 ]
机构
[1] Fac Sci Monastir, Dept Math, Monastir 5000, Tunisia
[2] Univ Tunis El Manar, Dept Math, Lab Special Funct Harmon Anal & Analogue, Fac Sci Tunis, Tunis 2092, Tunisia
关键词
Clifford analysis; Clifford-Fourier transform; Hardy's theorem; Miyachi's theorem; THEOREM;
D O I
10.1007/s00006-017-0791-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish analogues of Hardy's and Miyachi's theorems for the Clifford-Fourier transform.
引用
收藏
页码:2429 / 2443
页数:15
相关论文
共 50 条
  • [21] The Balian-Low Theorem for the Windowed Clifford-Fourier Transform
    Fu, Yingxiong
    Kahler, Uwe
    Cerejeiras, Paula
    QUATERNION AND CLIFFORD FOURIER TRANSFORMS AND WAVELETS, 2013, : 299 - 319
  • [22] The kernel of the generalized Clifford-Fourier transform and its generating function
    Lian, Pan
    Bao, Gejun
    De Bie, Hendrik
    Constales, Denis
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2017, 62 (02) : 214 - 229
  • [23] Paley-Wiener-Type theorems for the Clifford-Fourier transform
    Li, Shanshan
    Leng, Jinsong
    Fei, Minggang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6101 - 6113
  • [24] The Class of Clifford-Fourier Transforms
    De Bie, Hendrik
    De Schepper, Nele
    Sommen, Frank
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (06) : 1198 - 1231
  • [25] The Class of Clifford-Fourier Transforms
    Hendrik De Bie
    Nele De Schepper
    Frank Sommen
    Journal of Fourier Analysis and Applications, 2011, 17 : 1198 - 1231
  • [26] The Fractional Clifford-Fourier Kernel
    M. J. Craddock
    J. A. Hogan
    Journal of Fourier Analysis and Applications, 2013, 19 : 683 - 711
  • [27] The Fractional Clifford-Fourier Kernel
    Craddock, M. J.
    Hogan, J. A.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2013, 19 (04) : 683 - 711
  • [28] A new construction of the Clifford-Fourier kernel
    Constales, Denis
    De Bie, Hendrik
    Lian, Pan
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (02) : 462 - 483
  • [29] A new construction of the Clifford-Fourier kernel
    Denis Constales
    Hendrik De Bie
    Pan Lian
    Journal of Fourier Analysis and Applications, 2017, 23 : 462 - 483
  • [30] The bounds of the odd dimensional Clifford-Fourier kernels
    Lian, Pan
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (03) : 1213 - 1228