ON THE MULTIPLE SHOOTING CONTINUATION OF PERIODIC ORBITS BY NEWTON-KRYLOV METHODS

被引:30
|
作者
Sanchez, Juan [1 ]
Net, Marta [1 ]
机构
[1] Univ Politecn Cataluna, Dept Fis Aplicada, ES-08034 Barcelona, Spain
来源
关键词
Continuation methods; periodic orbits; Poincare maps; multiple shooting; parallelism; variational equations; Krylov methods; periodic Schur decomposition; Krylov-Schur method; SCHUR-ALGORITHM; EQUATIONS; SYSTEMS;
D O I
10.1142/S0218127410025399
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The application of the multiple shooting method to the continuation of periodic orbits in large-scale dissipative systems is analyzed. A preconditioner for the linear systems which appear in the application of Newton's method is presented. It is based on the knowledge of invariant sub-spaces of the Jacobians at nearby solutions. The possibility of speeding up the process by using parallelism is studied for the thermal convection of a binary mixture of fluids in a rectangular domain, with positive results.
引用
收藏
页码:43 / 61
页数:19
相关论文
共 50 条
  • [21] On Newton-Krylov multigrid methods for the incompressible Navier-Stokes equations
    Knoll, DA
    Mousseau, VA
    JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 163 (01) : 262 - 267
  • [22] Application of the Newton-Krylov method to geophysical flows
    Reisner, J
    Mousseau, V
    Knoll, D
    MONTHLY WEATHER REVIEW, 2001, 129 (09) : 2404 - 2415
  • [23] CONVERGENCE THEORY OF NONLINEAR NEWTON-KRYLOV ALGORITHMS
    BROWN, PN
    SAAD, Y
    SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (02) : 297 - 330
  • [24] Newton-Krylov iterative matrix representative spectrum
    Marques, N. P. C.
    Pereira, J. C. F.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (04) : 971 - 982
  • [25] Fast Newton-Krylov method for unstructured grids
    Blanco, M
    Zingg, DW
    AIAA JOURNAL, 1998, 36 (04) : 607 - 612
  • [26] Efficient Newton-Krylov solver for aerodynamic computations
    Pueyo, A
    Zingg, DW
    AIAA JOURNAL, 1998, 36 (11) : 1991 - 1997
  • [27] A Newton-Krylov algorithm for aerodynamic analysis and design
    Zingg, DW
    Nemec, M
    Chisholm, TT
    COMPUTATIONAL FLUID DYNAMICS 2002, 2003, : 3 - 18
  • [28] High-order scheme implementation using Newton-Krylov solution methods
    Johnson, RW
    McHugh, PR
    Knoll, DA
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 1997, 31 (03) : 295 - 312
  • [29] A safeguard approach to detect stagnation of GMRES(m) with applications in Newton-Krylov methods
    Gomes-Ruggiero, Marcia A.
    Rocha Lopes, Vera L.
    Toledo-Benavides, Julia V.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2008, 27 (02): : 175 - 199
  • [30] On using approximate finite differences in matrix-free Newton-Krylov methods
    Brown, Peter N.
    Walker, Homer F.
    Wasyk, Rebecca
    Woodward, Carol S.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) : 1892 - 1911