ON THE MULTIPLE SHOOTING CONTINUATION OF PERIODIC ORBITS BY NEWTON-KRYLOV METHODS

被引:30
|
作者
Sanchez, Juan [1 ]
Net, Marta [1 ]
机构
[1] Univ Politecn Cataluna, Dept Fis Aplicada, ES-08034 Barcelona, Spain
来源
关键词
Continuation methods; periodic orbits; Poincare maps; multiple shooting; parallelism; variational equations; Krylov methods; periodic Schur decomposition; Krylov-Schur method; SCHUR-ALGORITHM; EQUATIONS; SYSTEMS;
D O I
10.1142/S0218127410025399
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The application of the multiple shooting method to the continuation of periodic orbits in large-scale dissipative systems is analyzed. A preconditioner for the linear systems which appear in the application of Newton's method is presented. It is based on the knowledge of invariant sub-spaces of the Jacobians at nearby solutions. The possibility of speeding up the process by using parallelism is studied for the thermal convection of a binary mixture of fluids in a rectangular domain, with positive results.
引用
收藏
页码:43 / 61
页数:19
相关论文
共 50 条
  • [41] Crystal plasticity with Jacobian-Free Newton-Krylov
    Chockalingam, K.
    Tonks, M. R.
    Hales, J. D.
    Gaston, D. R.
    Millett, P. C.
    Zhang, Liangzhe
    COMPUTATIONAL MECHANICS, 2013, 51 (05) : 617 - 627
  • [42] Newton-Krylov Solver for Robust Turbomachinery Aerodynamic Analysis
    Xu, Shenren
    Mohanamuraly, Pavanakumar
    Wang, Dingxi
    Mueller, Jens-Dominik
    AIAA JOURNAL, 2020, 58 (03) : 1320 - 1336
  • [43] The preconditioned Jacobian-free Newton-Krylov methods for nonequilibrium radiation diffusion equations
    Feng, Tao
    Yu, Xijun
    An, Hengbin
    Li, Qin
    Zhang, Rongpei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 60 - 73
  • [44] Computation of invariant tori by Newton-Krylov methods in large-scale dissipative systems
    Sanchez, J.
    Net, M.
    Simo, C.
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (3-4) : 123 - 133
  • [45] Parametric continuation of the solitary traveling pulse solution in the reaction-diffusion system using the Newton-Krylov method
    Makeev, A. G.
    Semendyaeva, N. L.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2009, 49 (04) : 623 - 637
  • [46] Parametric continuation of the solitary traveling pulse solution in the reaction-diffusion system using the Newton-Krylov method
    A. G. Makeev
    N. L. Semendyaeva
    Computational Mathematics and Mathematical Physics, 2009, 49 : 623 - 637
  • [47] Using exact Jacobians in an implicit Newton-Krylov method
    Bramkamp, F. D.
    Buecker, H. M.
    Rasch, A.
    COMPUTERS & FLUIDS, 2006, 35 (10) : 1063 - 1073
  • [48] Parallel inexact Newton-Krylov and quasi-Newton solvers for nonlinear elasticity
    Barnafi, Nicolas A.
    Pavarino, Luca F.
    Scacchi, Simone
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 400
  • [49] Least squares dynamics in Newton-Krylov Model Predictive Control
    Knyazev, Andrew
    Malyshev, Alexander
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 5045 - 5050
  • [50] Periodic waveform Krylov subspace method of circuit systems by multiple shooting
    Jiang, YL
    IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 2005, 152 (01): : 33 - 37