A safeguard approach to detect stagnation of GMRES(m) with applications in Newton-Krylov methods

被引:0
|
作者
Gomes-Ruggiero, Marcia A. [1 ]
Rocha Lopes, Vera L. [1 ]
Toledo-Benavides, Julia V. [1 ]
机构
[1] Univ Estadual Campinas, IMECC, Dept Appl Math, BR-13083970 Campinas, SP, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2008年 / 27卷 / 02期
基金
巴西圣保罗研究基金会;
关键词
linear systems; restarting GMRES; inexact Newton method; nonlinear systems;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Restarting GMRES, a linear solver frequently used in numerical schemes, is known to suffer from stagnation. In this paper, a simple strategy is proposed to detect and avoid stagnation, without modifying the standard GMRES code. Numerical tests with the proposed modified GMRES(m) procedure for solving linear systems and also as part of an inexact Newton procedure, demonstrate the efficiency of this strategy.
引用
收藏
页码:175 / 199
页数:25
相关论文
共 50 条
  • [1] About Newton-Krylov methods
    Erhel, J
    COMPUTATIONAL SCIENCE FOR THE 21ST CENTURY, 1997, : 53 - 61
  • [2] Preconditioning Newton-Krylov methods in solidifying flow applications
    Knoll, DA
    Vanderheyden, WB
    Mousseau, VA
    Kothe, DB
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (02): : 381 - 397
  • [3] On preconditioning Newton-Krylov methods in solidifying flow applications
    Knoll, D.A.
    Vanderheyden, W.B.
    Mousseau, V.A.
    Kothe, D.B.
    SIAM Journal on Scientific Computing, 2002, 23 (02): : 381 - 397
  • [4] On the linear convergence of Newton-Krylov methods
    Smirnov, Georgi V.
    Sa, Vera
    OPTIMIZATION METHODS & SOFTWARE, 2009, 24 (02): : 271 - 283
  • [5] Jacobian-free Newton-Krylov methods: a survey of approaches and applications
    Knoll, DA
    Keyes, DE
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 193 (02) : 357 - 397
  • [6] Globalization technique for projected Newton-Krylov methods
    Chen, Jinhai
    Vuik, Cornelis
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 110 (07) : 661 - 674
  • [7] On nonlinear preconditioners in Newton-Krylov methods for unsteady flows
    Birken, Philipp
    Jameson, Antony
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 62 (05) : 565 - 573
  • [8] Preconditioning Newton-Krylov methods for variably saturated flow
    Jones, JE
    Woodward, CS
    COMPUTATIONAL METHODS IN WATER RESOURCES, VOLS 1 AND 2: COMPUTATIONAL METHODS FOR SUBSURFACE FLOW AND TRANSPORT, 2000, : 101 - 106
  • [9] ON THE MULTIPLE SHOOTING CONTINUATION OF PERIODIC ORBITS BY NEWTON-KRYLOV METHODS
    Sanchez, Juan
    Net, Marta
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (01): : 43 - 61
  • [10] Nonlinearly preconditioned Jacobian-free Newton-Krylov methods
    Kou, Jisheng
    Wang, Xiuhua
    Li, Yitian
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 404 - 408