ON THE MULTIPLE SHOOTING CONTINUATION OF PERIODIC ORBITS BY NEWTON-KRYLOV METHODS

被引:30
|
作者
Sanchez, Juan [1 ]
Net, Marta [1 ]
机构
[1] Univ Politecn Cataluna, Dept Fis Aplicada, ES-08034 Barcelona, Spain
来源
关键词
Continuation methods; periodic orbits; Poincare maps; multiple shooting; parallelism; variational equations; Krylov methods; periodic Schur decomposition; Krylov-Schur method; SCHUR-ALGORITHM; EQUATIONS; SYSTEMS;
D O I
10.1142/S0218127410025399
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The application of the multiple shooting method to the continuation of periodic orbits in large-scale dissipative systems is analyzed. A preconditioner for the linear systems which appear in the application of Newton's method is presented. It is based on the knowledge of invariant sub-spaces of the Jacobians at nearby solutions. The possibility of speeding up the process by using parallelism is studied for the thermal convection of a binary mixture of fluids in a rectangular domain, with positive results.
引用
收藏
页码:43 / 61
页数:19
相关论文
共 50 条
  • [1] Newton-Krylov continuation of periodic orbits for Navier-Stokes flows
    Sánchez, J
    Net, M
    García-Archilla, B
    Simó, C
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 201 (01) : 13 - 33
  • [2] About Newton-Krylov methods
    Erhel, J
    COMPUTATIONAL SCIENCE FOR THE 21ST CENTURY, 1997, : 53 - 61
  • [3] On the linear convergence of Newton-Krylov methods
    Smirnov, Georgi V.
    Sa, Vera
    OPTIMIZATION METHODS & SOFTWARE, 2009, 24 (02): : 271 - 283
  • [4] Globalization technique for projected Newton-Krylov methods
    Chen, Jinhai
    Vuik, Cornelis
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 110 (07) : 661 - 674
  • [5] Preconditioning Newton-Krylov methods in solidifying flow applications
    Knoll, DA
    Vanderheyden, WB
    Mousseau, VA
    Kothe, DB
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (02): : 381 - 397
  • [6] On nonlinear preconditioners in Newton-Krylov methods for unsteady flows
    Birken, Philipp
    Jameson, Antony
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 62 (05) : 565 - 573
  • [7] Preconditioning Newton-Krylov methods for variably saturated flow
    Jones, JE
    Woodward, CS
    COMPUTATIONAL METHODS IN WATER RESOURCES, VOLS 1 AND 2: COMPUTATIONAL METHODS FOR SUBSURFACE FLOW AND TRANSPORT, 2000, : 101 - 106
  • [8] On preconditioning Newton-Krylov methods in solidifying flow applications
    Knoll, D.A.
    Vanderheyden, W.B.
    Mousseau, V.A.
    Kothe, D.B.
    SIAM Journal on Scientific Computing, 2002, 23 (02): : 381 - 397
  • [9] Nonlinearly preconditioned Jacobian-free Newton-Krylov methods
    Kou, Jisheng
    Wang, Xiuhua
    Li, Yitian
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 404 - 408
  • [10] Moving grids for magnetic reconnection via Newton-Krylov methods
    Yuan, Xuefei
    Jardin, Stephen C.
    Keyes, David E.
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (01) : 173 - 176