Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides

被引:72
|
作者
Tsay, Candice [1 ]
Mujagic, Elvis [1 ,3 ]
Madsen, Christi K. [4 ]
Gmachl, Claire F. [1 ]
Arnold, Craig B. [1 ,2 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[3] Vienna Univ Technol, Inst Solid State Elect, A-1040 Vienna, Austria
[4] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
来源
OPTICS EXPRESS | 2010年 / 18卷 / 15期
关键词
QUANTUM CASCADE LASERS; FILMS; FABRICATION; LONG;
D O I
10.1364/OE.18.015523
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An etch-free and cost-effective deposition and patterning method to fabricate mid-infrared chalcogenide glass waveguides for chemical sensing applications is introduced. As2S3 raised strip optical waveguides are produced by casting a liquid solution of As2S3 glass in capillary channel molds formed by soft lithography. Mid-IR transmission is characterized by coupling the output of a quantum cascade (QC) laser (lambda = 4.8 mu m) into the 40 mu m wide by 10 mu m thick multi-mode waveguides. Loss as low as 4.5 dB/cm is achieved using suitable substrate materials and post-processing. Optical absorption and surface roughness measurements indicate that the solution-processed films are of sufficient quality for optical devices and are promising for further development of waveguide-based mid-IR elements. (C) 2010 Optical Society of America
引用
收藏
页码:15523 / 15530
页数:8
相关论文
共 50 条
  • [31] CHALCOGENIDE GLASS-FIBERS FOR MID-INFRARED TRANSMISSION
    KANAMORI, T
    TERUNUMA, Y
    TAKAHASHI, S
    MIYASHITA, T
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 1984, 2 (05) : 607 - 613
  • [32] Ultra-broadband mid-infrared supercontinuum generation in square lattice As2S3 chalcogenide photonic crystal fibers
    Chu Van, Ben
    Dang Van, Trong
    Phan Thi, Lan
    Chu Van, Lanh
    Optik, 2024, 319
  • [33] Calculation of the expected output spectrum for a mid-infrared supercontinuum source based on As2S3 chalcogenide photonic crystal fibers
    Weiblen, R. J.
    Docherty, A.
    Menyuk, C. R.
    Shaw, L. B.
    Sanghera, J. S.
    Aggarwal, I. D.
    OPTICS EXPRESS, 2014, 22 (18): : 22220 - 22231
  • [34] An Ultrabroadband Mid-Infrared Pulsed Optical Switch Employing Solution-Processed Bismuth Oxyselenide
    Tian, Xiangling
    Luo, Hongyu
    Wei, Rongfei
    Zhu, Chunhui
    Guo, Qiangyi
    Yang, Dandan
    Wang, Fengqiu
    Li, Jianfeng
    Qiu, Jianrong
    ADVANCED MATERIALS, 2018, 30 (31)
  • [35] AG PHOTODOPING IN CHALCOGENIDE GLASS AS2S3
    ARAI, T
    WAKAYAMA, Y
    KUDO, H
    KISHIMOTO, T
    LEE, J
    OGAWA, T
    ONARI, S
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1989, 114 : 40 - 42
  • [36] Hollow glass waveguides for mid-infrared light transmission
    Saito, Mitsunori
    Baba, Nobuyoshi
    Sawanobori, Naruhito
    Miyagi, Mitsunobu
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 1994, 33 (1 A): : 164 - 168
  • [37] Third-order nonlinear wavelength conversion in chalcogenide glass waveguides towards mid-infrared photonics
    韩锋博
    顾佳新
    黄璐
    王航
    黄雅莉
    周学成
    虞绍良
    罗正钱
    董志鹏
    杜清扬
    Chinese Physics B, 2024, 33 (10) : 307 - 313
  • [38] Concentration dependence of As2S3 chalcogenide glass cluster size in amine solution
    Dutta, Nikita S.
    Arnold, Craig B.
    RSC ADVANCES, 2018, 8 (62): : 35819 - 35823
  • [39] Third-order nonlinear wavelength conversion in chalcogenide glass waveguides towards mid-infrared photonics
    Han, Fengbo
    Gu, Jiaxin
    Huang, Lu
    Wang, Hang
    Huang, Yali
    Zhou, Xuecheng
    Yu, Shaoliang
    Luo, Zhengqian
    Dong, Zhipeng
    Du, Qingyang
    CHINESE PHYSICS B, 2024, 33 (10)
  • [40] On-Chip Broadband Mid-Infrared Supercontinuum Generation Based on Highly Nonlinear Chalcogenide Glass Waveguides
    Xia, Di
    Huang, Yufei
    Zhang, Bin
    Yang, Zelin
    Zeng, Pingyang
    Shang, Haiyan
    Cheng, Huanjie
    Liu, Linghao
    Zhang, Mingjie
    Zhu, Ying
    Li, Zhaohui
    FRONTIERS IN PHYSICS, 2021, 9