Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides

被引:72
|
作者
Tsay, Candice [1 ]
Mujagic, Elvis [1 ,3 ]
Madsen, Christi K. [4 ]
Gmachl, Claire F. [1 ]
Arnold, Craig B. [1 ,2 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
[3] Vienna Univ Technol, Inst Solid State Elect, A-1040 Vienna, Austria
[4] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
来源
OPTICS EXPRESS | 2010年 / 18卷 / 15期
关键词
QUANTUM CASCADE LASERS; FILMS; FABRICATION; LONG;
D O I
10.1364/OE.18.015523
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An etch-free and cost-effective deposition and patterning method to fabricate mid-infrared chalcogenide glass waveguides for chemical sensing applications is introduced. As2S3 raised strip optical waveguides are produced by casting a liquid solution of As2S3 glass in capillary channel molds formed by soft lithography. Mid-IR transmission is characterized by coupling the output of a quantum cascade (QC) laser (lambda = 4.8 mu m) into the 40 mu m wide by 10 mu m thick multi-mode waveguides. Loss as low as 4.5 dB/cm is achieved using suitable substrate materials and post-processing. Optical absorption and surface roughness measurements indicate that the solution-processed films are of sufficient quality for optical devices and are promising for further development of waveguide-based mid-IR elements. (C) 2010 Optical Society of America
引用
收藏
页码:15523 / 15530
页数:8
相关论文
共 50 条
  • [21] Effect of Annealing Temperature on Optical and Structural Properties of Solution Processed As2S3 Chalcogenide Glass Films
    Khan, Hana
    Islam, Shama
    Dwivedi, Prabhat K.
    Dilawar, Nita
    Husain, Mushahid
    Zulfequar, M.
    MATERIALS TODAY-PROCEEDINGS, 2020, 21 : 2072 - 2078
  • [22] Temperature dependence of Bragg gratings in As2S3 amorphous chalcogenide glass waveguides
    Saliminia, A
    Galstian, T
    Villeneuve, A
    LaRochelle, S
    Richardson, K
    INTEGRATED PHOTONICS RESEARCH, TECHNICAL DIGEST, 2000, 45 : 309 - 311
  • [23] Temperature dependence of Bragg reflectors in chalcogenide As2S3 glass slab waveguides
    Saliminia, A
    Galstian, T
    Villeneuve, A
    Le Foulgoc, K
    Richardson, K
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2000, 17 (08) : 1343 - 1348
  • [24] Calculation of the expected bandwidth for a mid-infrared supercontinuum source based on As2S3 chalcogenide photonic crystal fibers
    Weiblen, R. J.
    Docherty, A.
    Hu, J.
    Menyuk, C. R.
    OPTICS EXPRESS, 2010, 18 (25): : 26666 - 26674
  • [25] Low-loss chalcogenide waveguides for biosensing in the mid-infrared
    Ma, Pan
    Choi, Duk-Yong
    Yu, Yi
    Gai, Xin
    Yang, Zhiyong
    Debbarma, Sukanta
    Madden, Steve
    Luther-Davies, Barry
    2014 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES, 2014, : 59 - 60
  • [26] Ultrafast laser-inscribed waveguides in IG2 chalcogenide glass for mid-infrared photonics applications
    Butcher, Helen L.
    MacLachlan, David G.
    Lee, David
    Thomson, Robert R.
    Weidmann, Damien
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXII, 2018, 10535
  • [27] Mid-Infrared HgTe/As2S3 Field Effect Transistors and Photodetectors
    Lhuillier, Emmanuel
    Keuleyan, Sean
    Zolotavin, Pavlo
    Guyot-Sionnest, Philippe
    ADVANCED MATERIALS, 2013, 25 (01) : 137 - 141
  • [28] Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide
    Gai, Xin
    Choi, Duk-Yong
    Madden, Steve
    Yang, Zhiyong
    Wang, Rongping
    Luther-Davies, Barry
    OPTICS LETTERS, 2012, 37 (18) : 3870 - 3872
  • [29] Modeling of As2S3 Raman Fiber Lasers Operating in the Mid-Infrared
    Fortin, Vincent
    Bernier, Martin
    El-Amraoui, Mohammed
    Messaddeq, Younes
    Vallee, Real
    IEEE PHOTONICS JOURNAL, 2013, 5 (06):
  • [30] Mid-infrared chalcogenide glass Raman fiber laser
    Bernier, M.
    Fortin, V.
    Caron, N.
    El-Amraoui, M.
    Messaddeq, Y.
    Vallee, R.
    OPTICS LETTERS, 2013, 38 (02) : 127 - 129