Finite Groups with DOUBLE-STRUCK CAPITAL P-Subnormal Sylow Subgroups

被引:1
|
作者
Kniahina, V. N. [1 ]
Monakhov, V. S. [1 ]
机构
[1] F Skorina Gomel State Univ, Gomel, BELARUS
关键词
D O I
10.1007/s11253-021-01872-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let DOUBLE-STRUCK CAPITAL P be the set of all prime numbers. A subgroup H of a finite group G is called DOUBLE-STRUCK CAPITAL P-subnormal if either H = G or there exists a chain of subgroups H = H-0 <= H-1 <= horizontal ellipsis <= H-n = G such that |H-i : Hi - 1| is an element of DOUBLE-STRUCK CAPITAL P, 1 <= i <= n. We prove that any finite group with DOUBLE-STRUCK CAPITAL P-subnormal Sylow p-subgroup of odd order is p-solvable and any group with DOUBLE-STRUCK CAPITAL P-subnormal generalized Schmidt subgroups is metanilpotent.
引用
收藏
页码:1571 / 1578
页数:8
相关论文
共 50 条
  • [1] Finite groups with P-subnormal subgroups
    Monakhov, Victor S.
    Kniahina, Viktoryia N.
    RICERCHE DI MATEMATICA, 2013, 62 (02) : 307 - 322
  • [2] ON THE PRODUCTS OF P-SUBNORMAL SUBGROUPS OF FINITE GROUPS
    Vasil'ev, A. F.
    Vasil'eva, T. I.
    Tyutyanov, V. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (01) : 47 - 54
  • [3] P-subnormal subgroups and the structure of finite groups
    Chen, Ruifang
    Zhao, Xianhe
    Li, Xiaoli
    RICERCHE DI MATEMATICA, 2023, 72 (02) : 771 - 778
  • [4] Finite Groups with P-Subnormal Schmidt Subgroups
    Yi, Xiaolan
    Xu, Zhuyan
    Kamornikov, S. F.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2024, 325 (SUPPL 1) : S231 - S238
  • [5] On p-subnormal subgroups of finite p-soluble groups
    Gómez-Fernández, M
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2001, 58 (03): : 537 - 547
  • [6] Finite Factorised Groups with Partially Solvable P-Subnormal Subgroups
    Monakhov, V.
    Kniahina, V.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2015, 36 (04) : 441 - 445
  • [7] Finite groups with generalized P-subnormal second maximal subgroups
    Kovaleva, Viktoria A.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2014, 7 (03)
  • [8] Finite Groups with ℙ-Subnormal Sylow Subgroups
    V. N. Kniahina
    V. S. Monakhov
    Ukrainian Mathematical Journal, 2021, 72 : 1571 - 1578
  • [9] SYLOW P-SUBGROUPS AND SUBNORMAL SUBGROUPS OF FINITE-GROUPS
    GURALNICK, R
    KLEIDMAN, PB
    LYONS, R
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1993, 66 : 129 - 151
  • [10] Finite Groups All of Whose Subgroups are P-Subnormal or TI-Subgroups
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Perez-Calabuig, V.
    Yi, X.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (02)