Finite Groups with DOUBLE-STRUCK CAPITAL P-Subnormal Sylow Subgroups

被引:1
|
作者
Kniahina, V. N. [1 ]
Monakhov, V. S. [1 ]
机构
[1] F Skorina Gomel State Univ, Gomel, BELARUS
关键词
D O I
10.1007/s11253-021-01872-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let DOUBLE-STRUCK CAPITAL P be the set of all prime numbers. A subgroup H of a finite group G is called DOUBLE-STRUCK CAPITAL P-subnormal if either H = G or there exists a chain of subgroups H = H-0 <= H-1 <= horizontal ellipsis <= H-n = G such that |H-i : Hi - 1| is an element of DOUBLE-STRUCK CAPITAL P, 1 <= i <= n. We prove that any finite group with DOUBLE-STRUCK CAPITAL P-subnormal Sylow p-subgroup of odd order is p-solvable and any group with DOUBLE-STRUCK CAPITAL P-subnormal generalized Schmidt subgroups is metanilpotent.
引用
收藏
页码:1571 / 1578
页数:8
相关论文
共 50 条