Finite groups with generalized P-subnormal second maximal subgroups

被引:3
|
作者
Kovaleva, Viktoria A. [1 ]
机构
[1] Francisk Skorina Gomel State Univ, Dept Math, Sovetskaya Str 104, Gomel 246019, BELARUS
关键词
2-maximal (second maximal) subgroup; soluble group; supersoluble group; minimal nonsupersoluble group; K-P-subnormal subgroup; U-subnormal subgroup; permutable subgroup;
D O I
10.1142/S1793557114500478
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a group G is said to be K-P-subnormal in G [A. F. Vasilyev, T. I. Vasilyeva and V. N. Tyutyanov, On finite groups with almost all K-P-subnormal Sylow subgroups, in Algebra and Combinatorics: Abstracts of Reports of the International Conference on Algebra and Combinatorics on Occasion the 60th Year Anniversary of A. A. Makhnev (Ekaterinburg, 2013), pp. 19-20] if there exists a chain of subgroups H = H-0 <= H-1 <= . . . <= H-n = G such that either Hi-1 is normal in Hi or |H-i : Hi-1| is a prime, for i = 1, . . . , n. In this paper, we describe finite groups in which every second maximal subgroup is K-P-subnormal.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Finite groups with P-subnormal subgroups
    Monakhov, Victor S.
    Kniahina, Viktoryia N.
    [J]. RICERCHE DI MATEMATICA, 2013, 62 (02) : 307 - 322
  • [2] ON THE PRODUCTS OF P-SUBNORMAL SUBGROUPS OF FINITE GROUPS
    Vasil'ev, A. F.
    Vasil'eva, T. I.
    Tyutyanov, V. N.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (01) : 47 - 54
  • [3] P-subnormal subgroups and the structure of finite groups
    Chen, Ruifang
    Zhao, Xianhe
    Li, Xiaoli
    [J]. RICERCHE DI MATEMATICA, 2023, 72 (02) : 771 - 778
  • [4] Finite Groups with P-Subnormal Schmidt Subgroups
    Yi, Xiaolan
    Xu, Zhuyan
    Kamornikov, S. F.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2024, 325 (SUPPL 1) : S231 - S238
  • [5] On p-subnormal subgroups of finite p-soluble groups
    Gómez-Fernández, M
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2001, 58 (03): : 537 - 547
  • [6] Finite Factorised Groups with Partially Solvable P-Subnormal Subgroups
    Monakhov, V.
    Kniahina, V.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2015, 36 (04) : 441 - 445
  • [7] Finite Groups All of Whose Subgroups are P-Subnormal or TI-Subgroups
    Ballester-Bolinches, A.
    Kamornikov, S. F.
    Perez-Calabuig, V.
    Yi, X.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (02)
  • [8] Finite groups with subnormal second or third maximal subgroups
    Lutsenko, Yu. V.
    Skiba, A. N.
    [J]. MATHEMATICAL NOTES, 2012, 91 (5-6) : 680 - 688
  • [9] Finite groups with subnormal second or third maximal subgroups
    Yu. V. Lutsenko
    A. N. Skiba
    [J]. Mathematical Notes, 2012, 91 : 680 - 688
  • [10] Finite groups in which all p-subnormal subgroups form a lattice
    Ezquerro, LM
    GomezFernandez, M
    [J]. ARCHIV DER MATHEMATIK, 1997, 68 (01) : 1 - 6