Finite groups with generalized P-subnormal second maximal subgroups

被引:3
|
作者
Kovaleva, Viktoria A. [1 ]
机构
[1] Francisk Skorina Gomel State Univ, Dept Math, Sovetskaya Str 104, Gomel 246019, BELARUS
关键词
2-maximal (second maximal) subgroup; soluble group; supersoluble group; minimal nonsupersoluble group; K-P-subnormal subgroup; U-subnormal subgroup; permutable subgroup;
D O I
10.1142/S1793557114500478
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subgroup H of a group G is said to be K-P-subnormal in G [A. F. Vasilyev, T. I. Vasilyeva and V. N. Tyutyanov, On finite groups with almost all K-P-subnormal Sylow subgroups, in Algebra and Combinatorics: Abstracts of Reports of the International Conference on Algebra and Combinatorics on Occasion the 60th Year Anniversary of A. A. Makhnev (Ekaterinburg, 2013), pp. 19-20] if there exists a chain of subgroups H = H-0 <= H-1 <= . . . <= H-n = G such that either Hi-1 is normal in Hi or |H-i : Hi-1| is a prime, for i = 1, . . . , n. In this paper, we describe finite groups in which every second maximal subgroup is K-P-subnormal.
引用
收藏
页数:8
相关论文
共 50 条