Finite Groups All of Whose Subgroups are P-Subnormal or TI-Subgroups

被引:0
|
作者
Ballester-Bolinches, A. [1 ,2 ]
Kamornikov, S. F. [3 ]
Perez-Calabuig, V. [2 ]
Yi, X. [4 ]
机构
[1] Guangdong Univ Educ, Dept Math, Guangzhou 510303, Peoples R China
[2] Univ Valencia, Dept Matemat, Dr Moliner,50, Burjassot 46100, Valencia, Spain
[3] Francisk Skorina State Gomel Univ, Gomel 246019, BELARUS
[4] Zhejiang Sci Tech Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
关键词
Finite group; P-subnormal subgroup; TI-subgroup; TRIVIAL INTERSECTION;
D O I
10.1007/s00009-024-02612-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P be the set of all prime numbers. A subgroup H of a finite group G is said to be P-subnormal in G if there exists a chain of subgroups H=H-0 subset of H-1 subset of<middle dot><middle dot><middle dot>subset of Hn-1 subset of H-n=G such that eitherH(i-1)is normal inH(i)or|H-i:Hi-1|is a prime number for every i=1,2,...,n. A subgroup H of G is called a TI-subgroup if every pair of distinct conjugates of H has trivial intersection. The aim of this paper is to give a complete description of all finite groups in which every non-P-subnormal subgroup is a TI-subgroup
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Finite groups whose non-σ-subnormal subgroups are TI-subgroups
    Yi, Xiaolan
    Wu, Xiang
    Kamornikov, Sergey
    [J]. COMMUNICATIONS IN ALGEBRA, 2023, 51 (11) : 4640 - 4644
  • [2] Finite groups with P-subnormal subgroups
    Monakhov, Victor S.
    Kniahina, Viktoryia N.
    [J]. RICERCHE DI MATEMATICA, 2013, 62 (02) : 307 - 322
  • [3] Finite groups whose abelian subgroups are TI-subgroups
    Guo, Xiuyun
    Li, Shirong
    Flavell, Paul
    [J]. JOURNAL OF ALGEBRA, 2007, 307 (02) : 565 - 569
  • [4] Invariant TI-subgroups or subnormal subgroups and structure of finite groups
    Lu, Jiakuan
    Li, Minghui
    Zhang, Boru
    Meng, Wei
    [J]. COMMUNICATIONS IN ALGEBRA, 2023, 51 (09) : 3703 - 3707
  • [5] Finite simple groups the nilpotent residuals of all of whose subgroups are TI-subgroups
    Meng, Wei
    Lu, Jiakuan
    Zhang, Boru
    [J]. RICERCHE DI MATEMATICA, 2023,
  • [6] ON THE PRODUCTS OF P-SUBNORMAL SUBGROUPS OF FINITE GROUPS
    Vasil'ev, A. F.
    Vasil'eva, T. I.
    Tyutyanov, V. N.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (01) : 47 - 54
  • [7] Simple groups the derived subgroups of all of whose subgroups are TI-subgroups
    Taghvasani, Leyli Jafari
    Kohl, Stefan
    [J]. COMMUNICATIONS IN ALGEBRA, 2019, 47 (11) : 4676 - 4683
  • [8] Finite groups whose non-abelian self-centralizing subgroups are TI-subgroups or subnormal subgroups
    Sun, Yuqing
    Lu, Jiakuan
    Meng, Wei
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (03)
  • [9] P-subnormal subgroups and the structure of finite groups
    Chen, Ruifang
    Zhao, Xianhe
    Li, Xiaoli
    [J]. RICERCHE DI MATEMATICA, 2023, 72 (02) : 771 - 778
  • [10] Finite Groups with P-Subnormal Schmidt Subgroups
    Yi, Xiaolan
    Xu, Zhuyan
    Kamornikov, S. F.
    [J]. PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2024, 325 (SUPPL 1) : S231 - S238