Understanding temporal and spatial variability of the lunar helium atmosphere using simultaneous observations from LRO, LADEE, and ARTEMIS

被引:13
|
作者
Hurley, Dana M. [1 ]
Cook, Jason C. [2 ]
Benna, Mehdi [3 ]
Halekas, Jasper S. [4 ]
Feldman, Paul D. [5 ]
Retherford, Kurt D. [6 ]
Hodges, R. Richard [7 ]
Grava, Cesare [6 ]
Mahaffy, Paul [3 ]
Gladstone, G. Randall [6 ]
Greathouse, Thomas [6 ]
Kaufmann, David E.
Elphic, Richard C. [8 ]
Stern, S. Alan [2 ]
机构
[1] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA
[2] SW Res Inst, Boulder, CO 80302 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[4] Univ Iowa, Iowa City, IA 52242 USA
[5] Johns Hopkins Univ, Baltimore, MD 21218 USA
[6] SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78228 USA
[7] Univ Colorado, Boulder, CO 80303 USA
[8] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
关键词
Moon; Atmospheres; evolution; Spectroscopy; Solar wind; SOLAR-WIND; MERCURY; MOON; INSTRUMENT; HYDROGEN; MISSION; ARGON; LAMP;
D O I
10.1016/j.icarus.2015.09.011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Simultaneous measurements of helium in the exosphere of the Moon are made from the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and the Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS) through the entire 5-month span of the LADEE mission. In addition, the ARTEMIS mission monitored the solar wind alpha particle flux to the Moon. Modeling the lunar helium exosphere, we relate the LAMP polar observations to the LADEE equatorial observations. Further, using the ARTEMIS alpha flux in the Monte Carlo model reproduces the temporal variations in helium density. Comparing the LAMP data to the LADEE data shows excellent agreement. Comparing those with the ARTEMIS data reveals that the solar wind alpha flux is the primary driver to variability in the helium exosphere throughout the LADEE mission. Using a decay time for exospheric helium of 5 days, we determine that the solar wind contributes 64 +/- 5% of the helium to the lunar exosphere. The remaining 36 +/- 5% is presumed to come from outgassing of radiogenic helium from the interior of the Moon. Furthermore, the model reproduces the measurements if 63 +/- 6% of the incident alpha particles are converted to thermalized helium atoms through the interaction between the alphas and the lunar surface. However, these values are dependent on both inferred source rates from LAMP and LADEE observations and on the assumed time constant of the exospheric decay rate. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 50 条
  • [1] Lunar exospheric helium observations of LRO/LAMP coordinated with ARTEMIS
    Grava, C.
    Retherford, K. D.
    Hurley, D. M.
    Feldman, P. D.
    Gladstone, G. R.
    Greathouse, T. K.
    Cook, J. C.
    Stern, S. A.
    Pryor, W. R.
    Halekas, J. S.
    Kaufmann, D. E.
    ICARUS, 2016, 273 : 36 - 44
  • [2] Temporal variability of lunar exospheric helium during January 2012 from LRO/LAMP
    Feldman, Paul D.
    Hurley, Dana M.
    Retherford, Kurt D.
    Gladstone, G. Randall
    Stern, S. Alan
    Pryor, Wayne
    Parker, Joel Wm.
    Kaufmann, David E.
    Davis, Michael W.
    Versteeg, Maarten H.
    ICARUS, 2012, 221 (02) : 854 - 858
  • [3] Using ARTEMIS pickup ion observations to place constraints on the lunar atmosphere
    Halekas, J. S.
    Poppe, A. R.
    Delory, G. T.
    Sarantos, M.
    McFadden, J. P.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2013, 118 (01) : 81 - 88
  • [4] The atmosphere and the spatial and temporal variability of phenological observations in Central Europe
    Scheifinger, H
    Koch, E
    Peter, C
    Menzel, A
    Ahas, R
    15TH CONFERENCE ON BIOMETEOROLOGY AND AEROBIOLOGY JOINT WITH THE 16TH INTERNATIONAL CONGRESS ON BIOMETEOROLOGY, 2002, : 270 - 273
  • [5] Temporal and Spatial Variability of Precipitation from Observations and Models*
    Trammell, James H.
    Jiang, Xun
    Li, Liming
    Kao, Angela
    Zhang, Guang J.
    Chang, Edmund K. M.
    Yung, Yuk
    JOURNAL OF CLIMATE, 2016, 29 (07) : 2543 - 2555
  • [6] Understanding the Microphysical Control and Spatial-Temporal Variability of Warm Rain Probability Using CloudSat and MODIS Observations
    Zhang, Zhibo
    Oreopoulos, Lazaros
    Lebsock, Matthew D.
    Mechem, David B.
    Covert, Justin
    GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (10)
  • [7] Advances in Understanding Top-of-Atmosphere Radiation Variability from Satellite Observations
    Loeb, Norman G.
    Kato, Seiji
    Su, Wenying
    Wong, Takmeng
    Rose, Fred G.
    Doelling, David R.
    Norris, Joel R.
    Huang, Xianglei
    SURVEYS IN GEOPHYSICS, 2012, 33 (3-4) : 359 - 385
  • [8] Advances in Understanding Top-of-Atmosphere Radiation Variability from Satellite Observations
    Norman G. Loeb
    Seiji Kato
    Wenying Su
    Takmeng Wong
    Fred G. Rose
    David R. Doelling
    Joel R. Norris
    Xianglei Huang
    Surveys in Geophysics, 2012, 33 : 359 - 385
  • [9] Spatial and temporal variability of snowfall over Greenland from CloudSat observations
    Bennartz, Ralf
    Fell, Frank
    Pettersen, Claire
    Shupe, Matthew D.
    Schuettemeyer, Dirk
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (12) : 8101 - 8121
  • [10] Spatial and Temporal Variability of Atlantic Water in the Arctic From 40 Years of Observations
    Richards, Alice E.
    Johnson, Helen L.
    Lique, Camille
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2022, 127 (09)