Lunar exospheric helium observations of LRO/LAMP coordinated with ARTEMIS

被引:10
|
作者
Grava, C. [1 ]
Retherford, K. D. [1 ]
Hurley, D. M. [2 ]
Feldman, P. D. [3 ]
Gladstone, G. R. [1 ]
Greathouse, T. K. [1 ]
Cook, J. C. [4 ]
Stern, S. A. [4 ]
Pryor, W. R. [5 ]
Halekas, J. S. [6 ]
Kaufmann, D. E. [4 ]
机构
[1] SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78238 USA
[2] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA
[3] Johns Hopkins Univ, Baltimore, MD 21218 USA
[4] SW Res Inst, Boulder, CO 80302 USA
[5] Cent Arizona Coll, Coolidge, AZ 85228 USA
[6] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
关键词
Moon; Ultraviolet observations; Solar wind; SOLAR-WIND; HYDROGEN; VARIABILITY; ATMOSPHERES; MERCURY; LAMP;
D O I
10.1016/j.icarus.2015.10.033
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present results from Lunar Reconnaissance Orbiter's (LRO) UV spectrograph LAMP (Lyman-Alpha Mapping Project) campaign to study the lunar atmosphere. Several off-nadir maneuvers (lateral rolls) were performed to search for resonantly scattering species, increasing the illuminated line-of-sight (and hence the signal from atoms resonantly scattering the solar photons) compared to previously reported LAMP's "twilight observations" (Cook, J.C., Stern, S.A. [2014]. Icarus 236, 48-55). Helium was the only element distinguishable on a daily basis, and we present latitudinal profiles of its line-of-sight column density in December 2013. We compared the helium line-of-sight column densities with solar wind alpha particle fluxes measured from the ARTEMIS (Acceleration, Reconnection, Turbulence, & Electrodynamics of Moon's Interaction with the Sun) twin spacecraft. Our data show a correlation with the solar wind alpha particle flux, confirming that the solar wind is the main source of the lunar helium. We also support the finding by Benna et al. (Benna, M. et al. [2015]. Geophys. Res. Lett. 42, 3723-3729) and Hurley et al. (Hurley, D.M. et al. [2015]. Icarus, this issue), that a non-zero contribution from endogenic helium, coming from radioactive decay of Th-232 and U-238, is present. Moreover, our results suggest that not all of the incident alpha particles are converted to thermalized helium, allowing for a non-negligible fraction to escape as suprathermal helium or simply backscattered from the lunar surface. We compare LAMP-derived helium surface density with the one recorded by the mass spectrometer LACE (Lunar Atmospheric Composition Experiment) deployed on the lunar surface during the Apollo 17 mission, finding good agreement between the two measurements. The LRO/LAMP roll observations presented here are in agreement with the most recent lunar exospheric helium model (Hurley, D.M. et al. [2015]. Icarus, this issue) around mid- to high-latitudes (50-70 degrees) regardless of the local solar time, while there is an underestimation of the model around the low- to mid-latitudes (10-30 degrees), especially around the dawn terminator. The LRO/LAMP roll observations presented here provide unique coverage of local solar time and latitude of the lunar exospheric helium, filling a gap in the knowledge of the structure of the lunar exosphere as a whole. These observations will inform future models of transport of volatiles, since at the terminator the analytic expressions for the surface temperature, essential to determine the energy distribution, the residence time, and the hop length of the particles, is least accurate. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:36 / 44
页数:9
相关论文
共 50 条
  • [1] Temporal variability of lunar exospheric helium during January 2012 from LRO/LAMP
    Feldman, Paul D.
    Hurley, Dana M.
    Retherford, Kurt D.
    Gladstone, G. Randall
    Stern, S. Alan
    Pryor, Wayne
    Parker, Joel Wm.
    Kaufmann, David E.
    Davis, Michael W.
    Versteeg, Maarten H.
    ICARUS, 2012, 221 (02) : 854 - 858
  • [2] LRO/LAMP observations of the lunar helium exosphere: constraints on thermal accommodation and outgassing rate
    Grava, Cesare
    Hurley, Dana M.
    Feldman, Paul D.
    Retherford, Kurt D.
    Greathouse, Thomas K.
    Pryor, Wayne R.
    Gladstone, G. Randall
    Halekas, Jasper S.
    Mandt, Kathleen E.
    Wyrick, Danielle Y.
    Davis, Michael W.
    Egan, Anthony F.
    Kaufmann, David E.
    Versteeg, Maarten H.
    Stern, S. Alan
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 501 (03) : 4438 - 4451
  • [3] Understanding temporal and spatial variability of the lunar helium atmosphere using simultaneous observations from LRO, LADEE, and ARTEMIS
    Hurley, Dana M.
    Cook, Jason C.
    Benna, Mehdi
    Halekas, Jasper S.
    Feldman, Paul D.
    Retherford, Kurt D.
    Hodges, R. Richard
    Grava, Cesare
    Mahaffy, Paul
    Gladstone, G. Randall
    Greathouse, Thomas
    Kaufmann, David E.
    Elphic, Richard C.
    Stern, S. Alan
    ICARUS, 2016, 273 : 45 - 52
  • [4] Far-UV Observations of Lunar Rayed Craters with LRO-LAMP
    Byron, B. D.
    Retherford, K. D.
    Greathouse, T. K.
    Wyrick, D.
    Cahill, J. T. S.
    Hendrix, A. R.
    Raut, U.
    Mandt, K. E.
    Denevi, B. W.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2020, 125 (03)
  • [5] Lunar Reconnaissance Orbiter (LRO): Observations for Lunar Exploration and Science
    Richard Vondrak
    John Keller
    Gordon Chin
    James Garvin
    Space Science Reviews, 2010, 150 : 7 - 22
  • [6] Lunar Reconnaissance Orbiter (LRO): Observations for Lunar Exploration and Science
    Vondrak, Richard
    Keller, John
    Chin, Gordon
    Garvin, James
    SPACE SCIENCE REVIEWS, 2010, 150 (1-4) : 7 - 22
  • [7] LRO-LAMP Observations of the LCROSS Impact Plume
    Gladstone, G. Randall
    Hurley, Dana M.
    Retherford, Kurt D.
    Feldman, Paul D.
    Pryor, Wayne R.
    Chaufray, Jean-Yves
    Versteeg, Maarten
    Greathouse, Thomas K.
    Steffl, Andrew J.
    Throop, Henry
    Parker, Joel Wm.
    Kaufmann, David E.
    Egan, Anthony F.
    Davis, Michael W.
    Slater, David C.
    Mukherjee, Joey
    Miles, Paul F.
    Hendrix, Amanda R.
    Colaprete, Anthony
    Stern, S. Alan
    SCIENCE, 2010, 330 (6003) : 472 - 476
  • [8] Magnetotail Shape at Lunar Distances: ARTEMIS Observations
    Akay, Iklim Gencturk
    Kaymaz, Zerefsan
    Sibeck, David G.
    PROCEEDINGS OF 6TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST 2013), 2013, : 739 - 742
  • [9] Limits on the Density of the Lunar Ionosphere: ARTEMIS Observations
    Shen, Han-Wen
    Halekas, Jasper S.
    Poppe, Andrew R.
    ASTROPHYSICAL JOURNAL, 2023, 958 (02):
  • [10] Outward expansion of the lunar wake: ARTEMIS observations
    Zhang, H.
    Khurana, K. K.
    Zong, Q. -G.
    Kivelson, M. G.
    Hsu, T. -S.
    Wan, W. X.
    Pu, Z. Y.
    Angelopoulos, V.
    Cao, X.
    Wang, Y. F.
    Shi, Q. Q.
    Liu, W. L.
    Tian, A. M.
    Tang, C. L.
    GEOPHYSICAL RESEARCH LETTERS, 2012, 39