Understanding temporal and spatial variability of the lunar helium atmosphere using simultaneous observations from LRO, LADEE, and ARTEMIS

被引:13
|
作者
Hurley, Dana M. [1 ]
Cook, Jason C. [2 ]
Benna, Mehdi [3 ]
Halekas, Jasper S. [4 ]
Feldman, Paul D. [5 ]
Retherford, Kurt D. [6 ]
Hodges, R. Richard [7 ]
Grava, Cesare [6 ]
Mahaffy, Paul [3 ]
Gladstone, G. Randall [6 ]
Greathouse, Thomas [6 ]
Kaufmann, David E.
Elphic, Richard C. [8 ]
Stern, S. Alan [2 ]
机构
[1] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA
[2] SW Res Inst, Boulder, CO 80302 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[4] Univ Iowa, Iowa City, IA 52242 USA
[5] Johns Hopkins Univ, Baltimore, MD 21218 USA
[6] SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78228 USA
[7] Univ Colorado, Boulder, CO 80303 USA
[8] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
关键词
Moon; Atmospheres; evolution; Spectroscopy; Solar wind; SOLAR-WIND; MERCURY; MOON; INSTRUMENT; HYDROGEN; MISSION; ARGON; LAMP;
D O I
10.1016/j.icarus.2015.09.011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Simultaneous measurements of helium in the exosphere of the Moon are made from the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and the Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS) through the entire 5-month span of the LADEE mission. In addition, the ARTEMIS mission monitored the solar wind alpha particle flux to the Moon. Modeling the lunar helium exosphere, we relate the LAMP polar observations to the LADEE equatorial observations. Further, using the ARTEMIS alpha flux in the Monte Carlo model reproduces the temporal variations in helium density. Comparing the LAMP data to the LADEE data shows excellent agreement. Comparing those with the ARTEMIS data reveals that the solar wind alpha flux is the primary driver to variability in the helium exosphere throughout the LADEE mission. Using a decay time for exospheric helium of 5 days, we determine that the solar wind contributes 64 +/- 5% of the helium to the lunar exosphere. The remaining 36 +/- 5% is presumed to come from outgassing of radiogenic helium from the interior of the Moon. Furthermore, the model reproduces the measurements if 63 +/- 6% of the incident alpha particles are converted to thermalized helium atoms through the interaction between the alphas and the lunar surface. However, these values are dependent on both inferred source rates from LAMP and LADEE observations and on the assumed time constant of the exospheric decay rate. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 50 条
  • [41] Spatial and temporal variability in MLT turbulence inferred from in situ and ground-based observations during the WADIS-1 sounding rocket campaign
    Strelnikov, Boris
    Szewczyk, Artur
    Strelnikova, Irina
    Latteck, Ralph
    Baumgarten, Gerd
    Lubken, Franz-Josef
    Rapp, Markus
    Fasoulas, Stefanos
    Lohle, Stefan
    Eberhart, Martin
    Hoppe, Ulf-Peter
    Dunker, Tim
    Friedrich, Martin
    Hedin, Jonas
    Khaplanov, Mikhail
    Gumbel, Jorg
    Barjatya, Aroh
    ANNALES GEOPHYSICAE, 2017, 35 (03) : 547 - 565
  • [42] Assessment of POPs in air from Spain using passive sampling from 2008 to 2015. Part I: Spatial and temporal observations of PBDEs
    Roscales, Jose L.
    Munoz-Arnanz, Juan
    Ros, Maria
    Vicente, Alba
    Barrios, Laura
    Jimenez, Begona
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 634 : 1657 - 1668
  • [43] Deep Understanding of Urban Dynamics from Imprint Urban Toponymic Data Using a Spatial-Temporal-Semantic Analysis Approach
    Chen, Yurong
    Zhang, Feng
    Li, Xinba
    Zhang, Chuanrong
    Chen, Ninghua
    Du, Zhenhong
    Liu, Renyi
    Wang, Bo
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (05)
  • [44] Assessment of spatial and temporal variability in the US solar resource from radiometric measurements and predictions from models using ground-based or satellite data
    Gueymard, Christian A.
    Wilcox, Stephen M.
    SOLAR ENERGY, 2011, 85 (05) : 1068 - 1084
  • [45] Unveiling spatial and temporal heterogeneity of a tropical forest canopy using high-resolution NIRv, FCVI, and NIRvrad from UAS observations
    Merrick, Trina
    Pau, Stephanie
    Detto, Matteo
    Broadbent, Eben N.
    Bohlman, Stephanie A.
    Still, Christopher J.
    Zambrano, Angelica M. Almeyda
    BIOGEOSCIENCES, 2021, 18 (22) : 6077 - 6091
  • [46] Spatio-temporal characterization of long-term solar resource using spatial functional data analysis: Understanding the variability and complementarity of global horizontal irradiance in Ecuador
    Tapia, Mariela
    Heinemann, Detlev
    Ballari, Daniela
    Zondervan, Edwin
    RENEWABLE ENERGY, 2022, 189 : 1176 - 1193
  • [47] Determination of temporal and spatial variability of groundwater irrigation quality using geostatistical techniques on the coastal aquifer of Carsamba Plain, Turkey, from 1990 to 2012
    Arslan, Hakan
    ENVIRONMENTAL EARTH SCIENCES, 2017, 76 (01)
  • [48] Environmental factors controlling temporal and spatial variability in the soil-atmosphere exchange of CO2, CH4 and N2O from an Australian subtropical rainforest
    Rowlings, D. W.
    Grace, P. R.
    Kiese, R.
    Weier, K. L.
    GLOBAL CHANGE BIOLOGY, 2012, 18 (02) : 726 - 738
  • [49] Determination of temporal and spatial variability of groundwater irrigation quality using geostatistical techniques on the coastal aquifer of Çarşamba Plain, Turkey, from 1990 to 2012
    Hakan Arslan
    Environmental Earth Sciences, 2017, 76
  • [50] Assessment of POPs in air from Spain using passive sampling from 2008 to 2015. Part II: Spatial and temporal observations of PCDD/Fs and dl-PCBs
    Munoz-Arnanz, Juan
    Roscales, Jose L.
    Vicente, Alba
    Ros, Maria
    Barrios, Laura
    Morales, Laura
    Abad, Esteban
    Jimenez, Begona
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 634 : 1669 - 1679