Understanding temporal and spatial variability of the lunar helium atmosphere using simultaneous observations from LRO, LADEE, and ARTEMIS

被引:13
|
作者
Hurley, Dana M. [1 ]
Cook, Jason C. [2 ]
Benna, Mehdi [3 ]
Halekas, Jasper S. [4 ]
Feldman, Paul D. [5 ]
Retherford, Kurt D. [6 ]
Hodges, R. Richard [7 ]
Grava, Cesare [6 ]
Mahaffy, Paul [3 ]
Gladstone, G. Randall [6 ]
Greathouse, Thomas [6 ]
Kaufmann, David E.
Elphic, Richard C. [8 ]
Stern, S. Alan [2 ]
机构
[1] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA
[2] SW Res Inst, Boulder, CO 80302 USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[4] Univ Iowa, Iowa City, IA 52242 USA
[5] Johns Hopkins Univ, Baltimore, MD 21218 USA
[6] SW Res Inst, 6220 Culebra Rd, San Antonio, TX 78228 USA
[7] Univ Colorado, Boulder, CO 80303 USA
[8] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
关键词
Moon; Atmospheres; evolution; Spectroscopy; Solar wind; SOLAR-WIND; MERCURY; MOON; INSTRUMENT; HYDROGEN; MISSION; ARGON; LAMP;
D O I
10.1016/j.icarus.2015.09.011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Simultaneous measurements of helium in the exosphere of the Moon are made from the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and the Lunar Atmosphere and Dust Environment Explorer (LADEE) Neutral Mass Spectrometer (NMS) through the entire 5-month span of the LADEE mission. In addition, the ARTEMIS mission monitored the solar wind alpha particle flux to the Moon. Modeling the lunar helium exosphere, we relate the LAMP polar observations to the LADEE equatorial observations. Further, using the ARTEMIS alpha flux in the Monte Carlo model reproduces the temporal variations in helium density. Comparing the LAMP data to the LADEE data shows excellent agreement. Comparing those with the ARTEMIS data reveals that the solar wind alpha flux is the primary driver to variability in the helium exosphere throughout the LADEE mission. Using a decay time for exospheric helium of 5 days, we determine that the solar wind contributes 64 +/- 5% of the helium to the lunar exosphere. The remaining 36 +/- 5% is presumed to come from outgassing of radiogenic helium from the interior of the Moon. Furthermore, the model reproduces the measurements if 63 +/- 6% of the incident alpha particles are converted to thermalized helium atoms through the interaction between the alphas and the lunar surface. However, these values are dependent on both inferred source rates from LAMP and LADEE observations and on the assumed time constant of the exospheric decay rate. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 50 条
  • [31] Subantarctic pCO2 estimated from a biogeochemical float: comparison with moored observations reinforces the importance of spatial and temporal variability
    Wynn-Edwards, Cathryn Ann
    Shadwick, Elizabeth H.
    Jansen, Peter
    Schallenberg, Christina
    Maurer, Tanya Lea
    Sutton, Adrienne J.
    FRONTIERS IN MARINE SCIENCE, 2023, 10
  • [32] Spatial Attribution of Temporal Variability in Global Land-Atmosphere CO2 Exchange Using a Model-Data Integration Framework
    Lee, H.
    Jung, M.
    Carvalhais, N.
    Reichstein, M.
    Forkel, M.
    Bloom, A. A.
    Pacheco-Labrador, J.
    Koirala, S.
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2025, 17 (03)
  • [33] Understanding the role of the spatial-temporal variability of catchment water storage capacity and its runoff response using deep learning networks
    Xie, Kang
    Cheng, Qian
    Zhang, Jianyun
    Liu, Pan
    Wang, Guoqing
    ENVIRONMENTAL RESEARCH LETTERS, 2024, 19 (06):
  • [34] Understanding Temporal and Spatial Distribution of Crop Residue Burning in China from 2003 to 2017 Using MODIS Data
    Zhuang, Yan
    Li, Ruiyuan
    Yang, Hao
    Chen, Danlu
    Chen, Ziyue
    Gao, Bingbo
    He, Bin
    REMOTE SENSING, 2018, 10 (03):
  • [35] Classifying direct normal irradiance 1-minute temporal variability from spatial characteristics of geostationary satellite-based cloud observations
    Schroedter-Homscheidt, Marion
    Kosmale, M.
    Saint-Drenan, Y-M
    METEOROLOGISCHE ZEITSCHRIFT, 2020, 29 (02) : 131 - 145
  • [36] Spatial and temporal variability of trace gas columns derived from WRF/Chem regional model output: Planning for geostationary observations of atmospheric composition
    Follette-Cook, Melanie B.
    Pickering, Kenneth E.
    Crawford, James H.
    Duncan, Bryan N.
    Loughner, Christopher P.
    Diskin, Glenn S.
    Fried, Alan
    Weinheimer, Andrew J.
    ATMOSPHERIC ENVIRONMENT, 2015, 118 : 28 - 44
  • [37] Modelling spatial and temporal variability of water quality from different monitoring stations using mixed effects model theory
    Romic, Davor
    Castrignano, Annamaria
    Romic, Marija
    Buttafuoco, Gabriele
    Kovacic, Marina Bubalo
    Ondrasek, Gabrijel
    Zovko, Monika
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 704 (704)
  • [38] Characterization of Temporal and Spatial Variability of Phosphorus Loading to Lake Erie from the Western Basin Using Wavelet Transform Methods
    Sharma, Suresh
    Nalley, Deasy
    Subedi, Naba
    HYDROLOGY, 2018, 5 (03):
  • [39] Temporal and Spatial Trends of the Standardized Precipitation Index (SPI) in Greece Using Observations and Output from Regional Climate Models
    Kostopoulou, E.
    Giannakopoulos, C.
    Krapsiti, D.
    Karali, A.
    PERSPECTIVES ON ATMOSPHERIC SCIENCES, 2017, : 475 - 481
  • [40] Mineralogy of young lunar mare basalts: Assessment of temporal and spatial heterogeneity using M3 data from Chandrayaan-1
    Varatharajan, Indhu
    Srivastava, Neeraj
    Murty, Sripada V. S.
    ICARUS, 2014, 236 : 56 - 71