Symplectic subspaces of symplectic Grassmannians

被引:4
|
作者
Cooperstein, B. N. [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
关键词
D O I
10.1016/j.ejc.2006.05.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a non-degenerate symplectic space of dimension 2n over the field F and for a natural number I < n denote by Cl(V) the incidence geometry whose points are the totally isotropic l-dimensional subspaces of V. Two points U, W of Cl (V) will be collinear when W subset of U-L and dim(U n W) = l - 1 and then the line on U and W will consist of all the l-dimensional subspaces of U + W which contain U n W. The isomorphism type of this geometry is denoted by C-n,C-l (F). When char(F) not equal 2 we classify subspaces S of C-l (F) where S congruent to C-m,C-k (F) (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1442 / 1454
页数:13
相关论文
共 50 条