Symplectic subspaces of symplectic Grassmannians

被引:4
|
作者
Cooperstein, B. N. [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
关键词
D O I
10.1016/j.ejc.2006.05.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a non-degenerate symplectic space of dimension 2n over the field F and for a natural number I < n denote by Cl(V) the incidence geometry whose points are the totally isotropic l-dimensional subspaces of V. Two points U, W of Cl (V) will be collinear when W subset of U-L and dim(U n W) = l - 1 and then the line on U and W will consist of all the l-dimensional subspaces of U + W which contain U n W. The isomorphism type of this geometry is denoted by C-n,C-l (F). When char(F) not equal 2 we classify subspaces S of C-l (F) where S congruent to C-m,C-k (F) (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1442 / 1454
页数:13
相关论文
共 50 条
  • [31] Complete symplectic quadrics and Kontsevich spaces of conics in Lagrangian Grassmannians
    Corniani, Elsa
    Massarenti, Alex
    ADVANCES IN MATHEMATICS, 2022, 397
  • [32] A characterization of symplectic Grassmannians (vol 286, pg 1421, 2017)
    Occhetta, Gianluca
    Conde, Luis E. Sola
    Watanabe, Kiwamu
    MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (1-2) : 569 - 570
  • [33] NONLINEAR SYMPLECTIC GRASSMANNIANS AND HAMILTONIAN ACTIONS IN PREQUANTUM LINE BUNDLES
    Torres, David Martinez
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (01)
  • [34] Almost holomorphic embeddings in Grassmannians with applications to singular symplectic submanifolds
    Muñoz, V
    Presas, F
    Sols, I
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2002, 547 : 149 - 189
  • [35] Symplectic Grassmannians and cyclic quiversSymplectic Grassmannians and cyclic quiversE. Feigin et al.
    Evgeny Feigin
    Martina Lanini
    Matteo Micheli
    Alexander Pütz
    Annali di Matematica Pura ed Applicata (1923 -), 2025, 204 (2): : 793 - 814
  • [36] A class of generalized symplectic graphs based on totally isotropic subspaces in symplectic spaces over finite fields
    Huo, Lijun
    Cheng, Weidong
    FILOMAT, 2024, 38 (10) : 3651 - 3663
  • [37] Perturbation analysis of Lagrangian invariant subspaces of symplectic matrices
    Mehl, Christian
    Mehrmann, Volker
    Ran, Andre C. M.
    Rodman, Leiba
    LINEAR & MULTILINEAR ALGEBRA, 2009, 57 (02): : 141 - 184
  • [38] Generic stabilizers for simple algebraic groups acting on orthogonal and symplectic Grassmannians
    Rizzoli, Aluna
    FORUM OF MATHEMATICS SIGMA, 2025, 13
  • [39] Wahl's conjecture holds in odd characteristics for symplectic and orthogonal Grassmannians
    Lakshmibai, Venkatramani
    Raghavan, Komaranapuram N.
    Sankaran, Parameswaran
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (02): : 214 - 223
  • [40] FIELD-EXTENSIONS AND ISOTROPIC SUBSPACES IN SYMPLECTIC-GEOMETRY
    KIM, DS
    RABAU, P
    GEOMETRIAE DEDICATA, 1990, 34 (03) : 281 - 293