Microstructural parcellation of the human brain

被引:20
|
作者
Fischl, Bruce [1 ,2 ,3 ]
Sereno, Martin I. [4 ]
机构
[1] Harvard Med Sch, Dept Radiol, Boston, MA USA
[2] Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging Mass, Los Angeles, CA USA
[3] MIT, Div Hlth Sci & Technol & Engn & Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] San Diego State Univ, Dept Psychol, SDSU Imaging Ctr, San Diego, CA 92182 USA
关键词
SURFACE-BASED ANALYSIS; OPTICAL COHERENCE TOMOGRAPHY; HUMAN CEREBRAL-CORTEX; FIBER ORIENTATIONS; AUDITORY-CORTEX; MYELIN CONTENT; BROCAS REGION; MOTOR CORTEX; DEFAULT MODE; AREAS;
D O I
10.1016/j.neuroimage.2018.01.036
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The human cerebral cortex is composed of a mosaic of areas thought to subserve different functions. The parcellation of the cortex into areas has a long history and has been carried out using different combinations of structural, connectional, receptotopic, and functional properties. Here we give a brief overview of the history of cortical parcellation, and explore different microstructural properties and analysis techniques that can be used to define the borders between different regions. We show that accounting for the 3D geometry of the highly folded human cortex is especially critical for accurate parcellation. We close with some thoughts on future directions and best practices for combining modalities.
引用
收藏
页码:219 / 231
页数:13
相关论文
共 50 条
  • [21] Use of anatomical parcellation to catalog and study structure-function relationships in the human brain
    Tzourio, N
    Petit, L
    Mellet, E
    Orssaud, C
    Crivello, F
    Benali, K
    Salamon, G
    Mazoyer, B
    HUMAN BRAIN MAPPING, 1997, 5 (04) : 228 - 232
  • [22] High-homogeneity functional parcellation of human brain for investigating robust functional connectivity
    Liu, Xiangyu
    Xie, Hua
    Nutter, Brian
    Mitra, Sunanda
    2018 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION (SSIAI), 2018, : 41 - 44
  • [23] An end -to -end infant brain parcellation pipeline
    Wang, Limei
    Sun, Yue
    Lin, Weili
    Li, Gang
    Wang, Li
    INTELLIGENT MEDICINE, 2024, 4 (02): : 65 - 74
  • [24] TOWARDS A DEEP LEARNING APPROACH TO BRAIN PARCELLATION
    Lee, Noah
    Laine, Andrew F.
    Klein, Arno
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 321 - 324
  • [25] Shape-based Multifeature Brain Parcellation
    Nadeem, Saad
    Kaufman, Arie
    MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
  • [26] A hierarchical algorithm for MR brain image parcellation
    Pohl, Kilian M.
    Bouix, Sylvain
    Nakamura, Motoaki
    Rohlfing, Torsten
    McCarley, Robert W.
    Kikinis, Ron
    Grimson, W. Eric L.
    Shenton, Martha E.
    Wells, William M.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2007, 26 (09) : 1201 - 1212
  • [27] MODEL SELECTION FOR HEMODYNAMIC BRAIN PARCELLATION IN FMRI
    Albughdadi, Mohanad
    Chaari, Lotfi
    Forbes, Florence
    Tourneret, Jean-Yves
    Ciuciu, Philippe
    2014 PROCEEDINGS OF THE 22ND EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2014, : 31 - 35
  • [29] Functional parcellation of attentional control regions of the brain
    Woldorff, MG
    Hazlett, CJ
    Fichtenholtz, HM
    Weissman, DH
    Dale, AM
    Song, AW
    JOURNAL OF COGNITIVE NEUROSCIENCE, 2004, 16 (01) : 149 - 165
  • [30] Microstructural maturation of the human brain from childhood to adulthood
    Lebel, C.
    Walker, L.
    Leemans, A.
    Phillips, L.
    Beaulieu, C.
    NEUROIMAGE, 2008, 40 (03) : 1044 - 1055