An end -to -end infant brain parcellation pipeline

被引:1
|
作者
Wang, Limei [1 ]
Sun, Yue [1 ]
Lin, Weili [1 ]
Li, Gang [1 ]
Wang, Li [1 ]
机构
[1] Univ N Carolina, Biomed Res Imaging Ctr, Dept Radiol, Chapel Hill, NC 27599 USA
来源
INTELLIGENT MEDICINE | 2024年 / 4卷 / 02期
基金
美国国家卫生研究院;
关键词
Infant brain parcellation; Isointense magnetic resonance image; Convolutional neural networks; Transformer; SEGMENTATION; INTEGRATION;
D O I
10.1016/j.imed.2023.05.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Objective Accurate infant brain parcellation is crucial for understanding early brain development; however, it is challenging due to the inherent low tissue contrast, high noise, and severe partial volume effects in infant magnetic resonance images (MRIs). The aim of this study was to develop an end -to -end pipeline that enabled accurate parcellation of infant brain MRIs. Methods We proposed an end -to -end pipeline that employs a two-stage global-to-local approach for accurate parcellation of infant brain MRIs. Specifically, in the global regions of interest (ROIs) localization stage, a combination of transformer and convolution operations was employed to capture both global spatial features and fine texture features, enabling an approximate localization of the ROIs across the whole brain. In the local ROIs refinement stage, leveraging the position priors from the first stage along with the raw MRIs, the boundaries of the ROIs are refined for a more accurate parcellation. Results We utilized the Dice ratio to evaluate the accuracy of parcellation results. Results on 263 subjects from National Database for Autism Research (NDAR), Baby Connectome Project (BCP) and Cross-site datasets demonstrated the better accuracy and robustness of our method than other competing methods. Conclusion Our end -to -end pipeline may be capable of accurately parcellating 6-month-old infant brain MRIs.
引用
收藏
页码:65 / 74
页数:10
相关论文
共 50 条
  • [1] Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline
    Chen, Xuhang
    Lei, Baiying
    Pun, Chi-Man
    Wang, Shuqiang
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XIII, 2024, 14437 : 16 - 26
  • [2] An end to end automated pipeline for brain structure segmentation in multiple sclerosis patients
    Gonzalez-Villa, S.
    Valverde, S.
    Cabezas, M.
    Huo, Y.
    Oliver, A.
    Ramio-Torrenta, L.
    Landman, B. A.
    Llado, X.
    MULTIPLE SCLEROSIS JOURNAL, 2019, 25 : 256 - 257
  • [3] An end-to-end pipeline for historical censuses processing
    Rémi Petitpierre
    Marion Kramer
    Lucas Rappo
    International Journal on Document Analysis and Recognition (IJDAR), 2023, 26 : 419 - 432
  • [4] An end-to-end pipeline for historical censuses processing
    Petitpierre, Remi
    Kramer, Marion
    Rappo, Lucas
    INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2023, 26 (04) : 419 - 432
  • [5] ATPP: A Pipeline for Automatic Tractography-Based Brain Parcellation
    Li, Hai
    Fan, Lingzhong
    Zhuo, Junjie
    Wang, Jiaojian
    Zhang, Yu
    Yang, Zhengyi
    Jiang, Tianzi
    FRONTIERS IN NEUROINFORMATICS, 2017, 11
  • [6] An End-To-End Pipeline for Fully Automatic Morphological Quantification of Mouse Brain Structures From MRI Imagery
    Alam, Shahinur
    Eom, Tae-Yeon
    Steinberg, Jeffrey
    Ackerman, David
    Schmitt, J. Eric
    Akers, Walter J.
    Zakharenko, Stanislav S.
    Khairy, Khaled
    FRONTIERS IN BIOINFORMATICS, 2022, 2
  • [7] Data analysis pipeline for EChO end-to-end simulations
    Ingo P. Waldmann
    E. Pascale
    Experimental Astronomy, 2015, 40 : 639 - 654
  • [8] HeartDIS: A Generalizable End-to-End Energy Disaggregation Pipeline
    Dimitriadis, Ilias
    Gkalinikis, Nikolaos Virtsionis
    Gkiouzelis, Nikolaos
    Vakali, Athena
    Athanasiadis, Christos
    Baslis, Costas
    ENERGIES, 2023, 16 (13)
  • [9] The end-to-end pipeline for HST slitless spectra PHLAG
    Kuemmel, M.
    Albrecht, R.
    Fosbury, R.
    Freudling, W.
    Haase, J.
    Hook, R. N.
    Kuntschner, H.
    Micol, A.
    Rosa, M. R.
    Walsh, J. R.
    THE 2007 ESO INSTRUMENT CALIBRATION WORKSHOP, 2008, : 185 - 190
  • [10] End-to-end Modelling of the Imaging Pipeline in Radio Astronomy
    Griffin, Anthony
    Ensor, Andrew
    2018 IEEE 10TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2018, : 480 - 484