An end -to -end infant brain parcellation pipeline

被引:1
|
作者
Wang, Limei [1 ]
Sun, Yue [1 ]
Lin, Weili [1 ]
Li, Gang [1 ]
Wang, Li [1 ]
机构
[1] Univ N Carolina, Biomed Res Imaging Ctr, Dept Radiol, Chapel Hill, NC 27599 USA
来源
INTELLIGENT MEDICINE | 2024年 / 4卷 / 02期
基金
美国国家卫生研究院;
关键词
Infant brain parcellation; Isointense magnetic resonance image; Convolutional neural networks; Transformer; SEGMENTATION; INTEGRATION;
D O I
10.1016/j.imed.2023.05.002
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Objective Accurate infant brain parcellation is crucial for understanding early brain development; however, it is challenging due to the inherent low tissue contrast, high noise, and severe partial volume effects in infant magnetic resonance images (MRIs). The aim of this study was to develop an end -to -end pipeline that enabled accurate parcellation of infant brain MRIs. Methods We proposed an end -to -end pipeline that employs a two-stage global-to-local approach for accurate parcellation of infant brain MRIs. Specifically, in the global regions of interest (ROIs) localization stage, a combination of transformer and convolution operations was employed to capture both global spatial features and fine texture features, enabling an approximate localization of the ROIs across the whole brain. In the local ROIs refinement stage, leveraging the position priors from the first stage along with the raw MRIs, the boundaries of the ROIs are refined for a more accurate parcellation. Results We utilized the Dice ratio to evaluate the accuracy of parcellation results. Results on 263 subjects from National Database for Autism Research (NDAR), Baby Connectome Project (BCP) and Cross-site datasets demonstrated the better accuracy and robustness of our method than other competing methods. Conclusion Our end -to -end pipeline may be capable of accurately parcellating 6-month-old infant brain MRIs.
引用
收藏
页码:65 / 74
页数:10
相关论文
共 50 条
  • [31] End-to-end pipeline for differential analysis of pausing in ribosome profiling data
    Flanagan, Keegan
    Li, Wanxin
    Greenblatt, Ethan J.
    Duc, Khanh Dao
    STAR PROTOCOLS, 2022, 3 (03):
  • [32] Eureka!: An End-to-End Pipeline for JWST Time-Series Observations
    Bell, Taylor J.
    Ahrer, Eva-Maria
    Brande, Jonathan
    Carter, Aarynn L.
    Feinstein, Adina D.
    Caloca, Giannina Guzman
    Mansfield, Megan
    Zieba, Sebastian
    Piaulet, Caroline
    Benneke, Björn
    Filippazzo, Joseph
    May, Erin M.
    Roy, Pierre-Alexis
    Kreidberg, Laura
    Stevenson, Kevin B.
    arXiv, 2022,
  • [33] DeepCeNS: An end-to-end Pipeline for Cell and Nucleus Segmentation in Microscopic Images
    Khalid, Nabeel
    Munir, Mohsin
    Edlund, Christoffer
    Jackson, Timothy R.
    Trygg, Johan
    Sjogren, Rickard
    Dengel, Andreas
    Ahmed, Sheraz
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [34] Incorporating Deep Learning Model Development With an End-to-End Data Pipeline
    Zhang, Kaichong
    IEEE ACCESS, 2024, 12 : 127522 - 127531
  • [35] aPEAch: Automated Pipeline for End-to-End Analysis of Epigenomic and Transcriptomic Data
    Xiropotamos, Panagiotis
    Papageorgiou, Foteini
    Manousaki, Haris
    Sinnis, Charalampos
    Antonatos, Charalabos
    Vasilopoulos, Yiannis
    Georgakilas, Georgios K.
    BIOLOGY-BASEL, 2024, 13 (07):
  • [36] An end-to-end deep learning pipeline to derive blood input with partial volume corrections for automated parametric brain PET mapping
    Chavan, Rugved
    Hyman, Gabriel
    Qureshi, Zoraiz
    Jayakumar, Nivetha
    Terrell, William
    Wardius, Megan
    Berr, Stuart
    Schiff, David
    Fountain, Nathan
    Muttikkal, Thomas Eluvathingal
    Quigg, Mark
    Zhang, Miaomiao
    Kundu, Bijoy K.
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2024, 10 (05):
  • [37] END OF BRAIN DRAIN
    RUNYON, JR
    CHEMICAL & ENGINEERING NEWS, 1970, 48 (05) : 6 - &
  • [38] END OF THE NAKED BRAIN
    PRICE, DD
    INTERDISCIPLINARY SCIENCE REVIEWS, 1983, 8 (01) : 5 - 7
  • [39] End-To-End Procedure For IORT in Brain Metastases
    Lozares, Sergio
    Garcia-Barrios, Alberto
    Ibanez-Carreras, Reyes
    Gonzalez-Perez, Victor
    Cisneros-Gimeno, Ana Isabel
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S4887 - S4890
  • [40] Acceleration of spleen segmentation with end-to-end deep learning method and automated pipeline
    Moon, Hyeonsoo
    Huo, Yuankai
    Abramson, Richard G.
    Peters, Richard Alan
    Assad, Albert
    Moyo, Tamara K.
    Savona, Michael R.
    Landman, Bennett A.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 107 : 109 - 117