MODEL SELECTION FOR HEMODYNAMIC BRAIN PARCELLATION IN FMRI

被引:0
|
作者
Albughdadi, Mohanad [1 ]
Chaari, Lotfi [1 ]
Forbes, Florence [2 ]
Tourneret, Jean-Yves [1 ]
Ciuciu, Philippe [3 ,4 ]
机构
[1] Univ Toulouse, IRIT, INP ENSEEIHT, Toulouse, France
[2] Grenoble Univ, LJK, MISTIS, INRIA, Grenoble, France
[3] CEA NeuroSpin, Parietal, France
[4] INRIA Saclay, Parietal, France
关键词
fMRI; JDE; JPDE; Parcellation; VEM; JOINT DETECTION-ESTIMATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Brain parcellation into a number of hemodynamically homogeneous regions (parcels) is a challenging issue in fMRI analyses. This task has been recently integrated in the joint detection estimation [1] resulting in the so-called joint parcellation detection estimation (JPDE) model [2]. JPDE automatically estimates the parcels from the fMRI data but requires the desired number of parcels to be fixed. This is potentially critical in that the chosen number of parcels may influence detection-estimation performance. In this paper, we propose a model selection procedure to automatically set the number of parcels from the data. The selection procedure relies on the calculation of the free energy corresponding to each concurrent model, within the variational expectation maximization framework. Experiments on synthetic and real fMRI data demonstrate the ability of the proposed procedure to select the optimal number of parcels.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 50 条
  • [1] Hemodynamic-Informed Parcellation of fMRI Data in a Joint Detection Estimation Framework
    Chaari, L.
    Forbes, F.
    Vincent, T.
    Ciuciu, P.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2012, PT III, 2012, 7512 : 180 - 188
  • [2] A Bayesian non-parametric hidden Markov random model for hemodynamic brain parcellation
    Albughdadi, M.
    Chaari, L.
    Tourneret, J. -Y.
    Forbes, F.
    Ciuciu, P.
    SIGNAL PROCESSING, 2017, 135 : 132 - 146
  • [3] MINING FMRI DYNAMICS WITH PARCELLATION PRIOR FOR BRAIN DISEASE DIAGNOSIS
    Liu, Xiaozhao
    Liu, Mianxin
    Mei, Lang
    Zhang, Yuyao
    Shi, Feng
    Zhang, Han
    Shen, Dinggang
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [4] fMRI Imaging Based Human Brain Parcellation Methods: A review
    Abdedayem, Fatma
    Kallel, Fathi
    Chaabane, Marwa
    Ben Hamida, Ahmed
    Sellami, Lamia
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP'2020), 2020,
  • [5] Applications of a novel hemodynamic model to functional brain studies with fNIRS and fMRI
    Kainerstorfer, Jana M.
    Pierro, Michele L.
    Hallacoglu, Bertan
    Sassaroli, Angelo
    Fantini, Sergio
    OPTICAL TOMOGRAPHY AND SPECTROSCOPY OF TISSUE X, 2013, 8578
  • [6] Spatially constrained hierarchical parcellation of the brain with resting-state fMRI
    Blumensath, Thomas
    Jbabdi, Saad
    Glasser, Matthew F.
    Van Essen, David C.
    Ugurbil, Kamil
    Behrens, Timothy E. J.
    Smith, Stephen M.
    NEUROIMAGE, 2013, 76 (01) : 313 - 324
  • [7] Parcellation of brain images with anatomical and functional constraints for fMRI data analysis
    Flandin, G
    Kherif, F
    Pennec, X
    Rivière, D
    Ayache, N
    Poline, JB
    2002 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, PROCEEDINGS, 2002, : 907 - 910
  • [8] Cohesive parcellation of the human brain using resting-state fMRI
    Nemani, Ajay
    Lowe, Mark J.
    JOURNAL OF NEUROSCIENCE METHODS, 2022, 377
  • [9] Mathematical Model of Evolution of Brain Parcellation
    Ferrante, Daniel D.
    Wei, Yi
    Koulakov, Alexei A.
    FRONTIERS IN NEURAL CIRCUITS, 2016, 10
  • [10] Sensitivity analysis of parcellation in the joint detection-estimation of brain activity in fMRI
    Vincent, Thomas
    Ciuciu, Philippe
    Thirion, Bertrand
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 568 - +