MODEL SELECTION FOR HEMODYNAMIC BRAIN PARCELLATION IN FMRI

被引:0
|
作者
Albughdadi, Mohanad [1 ]
Chaari, Lotfi [1 ]
Forbes, Florence [2 ]
Tourneret, Jean-Yves [1 ]
Ciuciu, Philippe [3 ,4 ]
机构
[1] Univ Toulouse, IRIT, INP ENSEEIHT, Toulouse, France
[2] Grenoble Univ, LJK, MISTIS, INRIA, Grenoble, France
[3] CEA NeuroSpin, Parietal, France
[4] INRIA Saclay, Parietal, France
关键词
fMRI; JDE; JPDE; Parcellation; VEM; JOINT DETECTION-ESTIMATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Brain parcellation into a number of hemodynamically homogeneous regions (parcels) is a challenging issue in fMRI analyses. This task has been recently integrated in the joint detection estimation [1] resulting in the so-called joint parcellation detection estimation (JPDE) model [2]. JPDE automatically estimates the parcels from the fMRI data but requires the desired number of parcels to be fixed. This is potentially critical in that the chosen number of parcels may influence detection-estimation performance. In this paper, we propose a model selection procedure to automatically set the number of parcels from the data. The selection procedure relies on the calculation of the free energy corresponding to each concurrent model, within the variational expectation maximization framework. Experiments on synthetic and real fMRI data demonstrate the ability of the proposed procedure to select the optimal number of parcels.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 50 条
  • [41] State Estimation of Hemodynamic Model for fMRI Under Confounds: SSM Method
    Wu, Haifeng
    Lu, Mingzhi
    Zeng, Yu
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (03) : 804 - 814
  • [42] Validation of the canonical hemodynamic response function model used in fMRI studies
    Olszowy, W.
    Williams, G.
    Rua, C.
    Aston, J.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2018, 28 : S55 - S56
  • [43] A Joint Constrained CCA Model for Network-Dependent Brain Subregion Parcellation
    Ling, Qinrui
    Liu, Aiping
    Li, Yu
    Fu, Xueyang
    Chen, Xun
    McKeown, Martin J.
    Wu, Feng
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (11) : 5641 - 5652
  • [44] Artificial bee colony clustering with self-adaptive crossover and stepwise search for brain functional parcellation in fMRI data
    Xuewu Zhao
    Junzhong Ji
    Aidong Zhang
    Soft Computing, 2019, 23 : 8689 - 8709
  • [45] Artificial bee colony clustering with self-adaptive crossover and stepwise search for brain functional parcellation in fMRI data
    Zhao, Xuewu
    Ji, Junzhong
    Zhang, Aidong
    SOFT COMPUTING, 2019, 23 (18) : 8689 - 8709
  • [46] Model free classification of FMRI brain images
    Shinkareva, S
    Ombao, H
    Sutton, B
    Gutchess, A
    Park, D
    JOURNAL OF COGNITIVE NEUROSCIENCE, 2005, : 35 - 35
  • [47] FMRI Analysis of Brain on Model for Teenage Group
    Yang, Feng
    Fu, Kuang
    2013 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2013, : 978 - 981
  • [48] Brain parcellation based on information theory
    Bonmati, Ester
    Bardera, Anton
    Boada, Imma
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 151 : 203 - 212
  • [49] A BAYESIAN MODEL SELECTION APPROACH TO FMRI ACTIVATION DETECTION
    Seghouane, Abd-Krim
    Ong, Ju Lynn
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 4401 - 4404
  • [50] Dynamic thalamus parcellation from resting-state fMRI data
    Ji, Bing
    Li, Zhihao
    Li, Kaiming
    Li, Longchuan
    Langley, Jason
    Shen, Hui
    Nie, Shengdong
    Zhang, Renjie
    Hu, Xiaoping
    HUMAN BRAIN MAPPING, 2016, 37 (03) : 954 - 967