MODEL SELECTION FOR HEMODYNAMIC BRAIN PARCELLATION IN FMRI

被引:0
|
作者
Albughdadi, Mohanad [1 ]
Chaari, Lotfi [1 ]
Forbes, Florence [2 ]
Tourneret, Jean-Yves [1 ]
Ciuciu, Philippe [3 ,4 ]
机构
[1] Univ Toulouse, IRIT, INP ENSEEIHT, Toulouse, France
[2] Grenoble Univ, LJK, MISTIS, INRIA, Grenoble, France
[3] CEA NeuroSpin, Parietal, France
[4] INRIA Saclay, Parietal, France
关键词
fMRI; JDE; JPDE; Parcellation; VEM; JOINT DETECTION-ESTIMATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Brain parcellation into a number of hemodynamically homogeneous regions (parcels) is a challenging issue in fMRI analyses. This task has been recently integrated in the joint detection estimation [1] resulting in the so-called joint parcellation detection estimation (JPDE) model [2]. JPDE automatically estimates the parcels from the fMRI data but requires the desired number of parcels to be fixed. This is potentially critical in that the chosen number of parcels may influence detection-estimation performance. In this paper, we propose a model selection procedure to automatically set the number of parcels from the data. The selection procedure relies on the calculation of the free energy corresponding to each concurrent model, within the variational expectation maximization framework. Experiments on synthetic and real fMRI data demonstrate the ability of the proposed procedure to select the optimal number of parcels.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 50 条
  • [21] Impaired hemodynamic response in the ischemic brain assessed with BOLD fMRI
    Amemiya, Shiori
    Kunimatsu, Akira
    Saito, Nobuhito
    Ohtomo, Kuni
    NEUROIMAGE, 2012, 61 (03) : 579 - 590
  • [22] fMRI-based data-driven brain parcellation using independent component analysis
    Reeves, William D.
    Ahmed, Ishfaque
    Jackson, Brooke S.
    Sun, Wenwu
    Williams, Celestine F.
    Davis, Catherine L.
    Mcdowell, Jennifer E.
    Yanasak, Nathan E.
    Su, Shaoyong
    Zhao, Qun
    JOURNAL OF NEUROSCIENCE METHODS, 2025, 417
  • [23] Distraction and target selection in the brain: An fMRI study
    Akyurek, Elkan G.
    Vallines, Ignacio
    Lin, En-Ju
    Schuboe, Anna
    NEUROPSYCHOLOGIA, 2010, 48 (11) : 3335 - 3342
  • [24] Effects of Hemodynamic Response Function Selection on Rat fMRI Statistical Analyses
    Peng, Shin-Lei
    Chen, Chun-Ming
    Huang, Chen-You
    Shih, Cheng-Ting
    Huang, Chiun-Wei
    Chiu, Shao-Chieh
    Shen, Wu-Chung
    FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [25] Validation of a novel hemodynamic model for coherent hemodynamics spectroscopy (CHS) and functional brain studies with fNIRS and fMRI
    Pierro, Michele L.
    Hallacoglu, Bertan
    Sassaroli, Angelo
    Kainerstorfer, Jana M.
    Fantini, Sergio
    NEUROIMAGE, 2014, 85 : 222 - 233
  • [26] Spatio-functional parcellation of resting state fMRI
    Parmar, Harshit
    Nutter, Brian
    Mitra, Sunanda
    Long, Rodney
    Antani, Sameer
    2024 IEEE SOUTHWEST SYMPOSIUM ON IMAGE ANALYSIS AND INTERPRETATION, SSIAI, 2024, : 1 - 4
  • [27] T-distribution stochastic neighbor embedding for fine brain functional parcellation on rs-fMRI
    Hu, Ying
    Li, Xiaobing
    Wang, Lijia
    Han, Baosan
    Nie, Shengdong
    BRAIN RESEARCH BULLETIN, 2020, 162 : 199 - 207
  • [28] The parcellation of cortical areas using replicator dynamics in fMRI
    Neumann, Jane
    von Cramon, D. Yves
    Forstmann, Birte U.
    Zysset, Stefan
    Lohmann, Gabriele
    NEUROIMAGE, 2006, 32 (01) : 208 - 219
  • [29] Selection of Optimal Hemodynamic Response Function for FMRI Analysis on Acute Stroke Patients
    Storti, S. F.
    Formaggio, E.
    Bertoldo, A.
    Manganotti, P.
    Fiaschi, A.
    Toffolo, G. M.
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 4: IMAGE PROCESSING, BIOSIGNAL PROCESSING, MODELLING AND SIMULATION, BIOMECHANICS, 2010, 25 : 253 - 256
  • [30] Microstructural parcellation of the human brain
    Fischl, Bruce
    Sereno, Martin I.
    NEUROIMAGE, 2018, 182 : 219 - 231