MODEL SELECTION FOR HEMODYNAMIC BRAIN PARCELLATION IN FMRI

被引:0
|
作者
Albughdadi, Mohanad [1 ]
Chaari, Lotfi [1 ]
Forbes, Florence [2 ]
Tourneret, Jean-Yves [1 ]
Ciuciu, Philippe [3 ,4 ]
机构
[1] Univ Toulouse, IRIT, INP ENSEEIHT, Toulouse, France
[2] Grenoble Univ, LJK, MISTIS, INRIA, Grenoble, France
[3] CEA NeuroSpin, Parietal, France
[4] INRIA Saclay, Parietal, France
关键词
fMRI; JDE; JPDE; Parcellation; VEM; JOINT DETECTION-ESTIMATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Brain parcellation into a number of hemodynamically homogeneous regions (parcels) is a challenging issue in fMRI analyses. This task has been recently integrated in the joint detection estimation [1] resulting in the so-called joint parcellation detection estimation (JPDE) model [2]. JPDE automatically estimates the parcels from the fMRI data but requires the desired number of parcels to be fixed. This is potentially critical in that the chosen number of parcels may influence detection-estimation performance. In this paper, we propose a model selection procedure to automatically set the number of parcels from the data. The selection procedure relies on the calculation of the free energy corresponding to each concurrent model, within the variational expectation maximization framework. Experiments on synthetic and real fMRI data demonstrate the ability of the proposed procedure to select the optimal number of parcels.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 50 条
  • [31] Big Data-Driven Brain Parcellation from fMRI: Impact of Cohort Heterogeneity on Functional Connectivity Maps
    Brooks, Skylar J.
    Parks, Sean M.
    Stamoulis, Catherine
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3133 - 3136
  • [32] Hierarchical Brain Parcellation with Uncertainty
    Graham, Mark S.
    Sudre, Carole H.
    Varsavsky, Thomas
    Tudosiu, Petru-Daniel
    Nachev, Parashkev
    Ourselin, Sebastien
    Cardoso, M. Jorge
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, AND GRAPHS IN BIOMEDICAL IMAGE ANALYSIS, UNSURE 2020, GRAIL 2020, 2020, 12443 : 23 - 31
  • [33] Groupwise whole-brain parcellation from resting-state fMRI data for network node identification
    Shen, X.
    Tokoglu, F.
    Papademetris, X.
    Constable, R. T.
    NEUROIMAGE, 2013, 82 : 403 - 415
  • [34] Parcellation-Dependent Small-World Brain Functional Networks: A Resting-State fMRI Study
    Wang, Jinhui
    Wang, Liang
    Zang, Yufeng
    Yang, Hong
    Tang, Hehan
    Gong, Qiyong
    Chen, Zhang
    Zhu, Chaozhe
    He, Yong
    HUMAN BRAIN MAPPING, 2009, 30 (05) : 1511 - 1523
  • [35] Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data
    Shen, X.
    Papademetris, X.
    Constable, R. T.
    NEUROIMAGE, 2010, 50 (03) : 1027 - 1035
  • [36] A sub plus cortical fMRI-based surface parcellation
    Lewis, John D.
    Bezgin, Gleb
    Fonov, Vladimir S.
    Collins, D. Louis
    Evans, Alan C.
    HUMAN BRAIN MAPPING, 2022, 43 (02) : 616 - 632
  • [37] FUNCTIONAL PARCELLATION OF THE HIPPOCAMPUS BY CLUSTERING RESTING STATE FMRI SIGNALS
    Cheng, Hewei
    Fan, Yong
    2014 IEEE 11TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2014, : 5 - 8
  • [38] Individual parcellation of resting fMRI with a group functional connectivity prior
    Chong, M.
    Bhushan, C.
    Joshi, A. A.
    Choi, S.
    Haldar, J. P.
    Shattuck, D. W.
    Spreng, R. N.
    Leahy, R. M.
    NEUROIMAGE, 2017, 156 : 87 - 100
  • [39] Concurrent brain parcellation and connectivity estimation via co-clustering of resting state fMRI data: A novel approach
    Cheng, Hewei
    Liu, Jie
    HUMAN BRAIN MAPPING, 2021, 42 (08) : 2477 - 2489
  • [40] Connectivity-Based Brain Parcellation
    Wang, Qi
    Chen, Rong
    JaJa, Joseph
    Jin, Yu
    Hong, L. Elliot
    Herskovits, Edward H.
    NEUROINFORMATICS, 2016, 14 (01) : 83 - 97