Decentralized pricing in minimum cost spanning trees

被引:11
|
作者
Hougaard, Jens Leth [2 ]
Moulin, Herve [1 ]
Osterdal, Lars Peter [3 ]
机构
[1] Rice Univ, Dept Econ, Houston, TX 77251 USA
[2] Univ Copenhagen, Dept Food & Resource Econ, DK-1958 Frederiksberg C, Denmark
[3] Univ Copenhagen, Dept Econ, DK-1455 Copenhagen K, Denmark
关键词
Pricing rules; Minimum cost spanning trees; Canonical pricing rule; Stand-alone cost; Decentralization; ALLOCATION; GAMES;
D O I
10.1007/s00199-009-0485-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
In the minimum cost spanning tree model we consider decentralized pricing rules, i.e., rules that cover at least the efficient cost while the price charged to each user only depends upon his own connection costs. We define a canonical pricing rule and provide two axiomatic characterizations. First, the canonical pricing rule is the smallest among those that improve upon the Stand Alone bound, and are either superadditive or piece-wise linear in connection costs. Our second, direct characterization relies on two simple properties highlighting the special role of the source cost.
引用
收藏
页码:293 / 306
页数:14
相关论文
共 50 条
  • [41] Minimum spanning trees with sums of ratios
    Skiscim, CC
    Palocsay, SW
    JOURNAL OF GLOBAL OPTIMIZATION, 2001, 19 (02) : 103 - 120
  • [42] Minimum spanning trees on random networks
    Dobrin, R
    Duxbury, PM
    PHYSICAL REVIEW LETTERS, 2001, 86 (22) : 5076 - 5079
  • [43] The vertex degrees of minimum spanning trees
    Cieslik, D
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2000, 125 (02) : 278 - 282
  • [44] Distributed and Autonomic Minimum Spanning Trees
    Rodrigues, Luiz A.
    Duarte, Elias P., Jr.
    Arantes, Luciana
    2014 BRAZILIAN SYMPOSIUM ON COMPUTER NETWORKS AND DISTRIBUTED SYSTEMS (SBRC), 2014, : 138 - 146
  • [45] Minimum restricted diameter spanning trees
    Hassin, R
    Levin, A
    DISCRETE APPLIED MATHEMATICS, 2004, 137 (03) : 343 - 357
  • [46] Hierarchical clustering in minimum spanning trees
    Yu, Meichen
    Hillebrand, Arjan
    Tewarie, Prejaas
    Meier, Jil
    van Dijk, Bob
    Van Mieghem, Piet
    Stam, Cornelis Jan
    CHAOS, 2015, 25 (02)
  • [47] Distributed Minimum Degree Spanning Trees
    Dinitz, Michael
    Halldorsson, Magnus M.
    Izumi, Taisuke
    Newport, Calvin
    PROCEEDINGS OF THE 2019 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING (PODC '19), 2019, : 511 - 520
  • [48] Counting minimum weight spanning trees
    Broder, AZ
    Mayr, EW
    JOURNAL OF ALGORITHMS, 1997, 24 (01) : 171 - 176
  • [49] On the Simultaneous Minimum Spanning Trees Problem
    Konecny, Matej
    Kucera, Stanislav
    Novotna, Jana
    Pekarek, Jakub
    Smolik, Martin
    Tetek, Jakub
    Topfer, Martin
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2018, 2018, 10743 : 235 - 248
  • [50] Computing minimum spanning trees with uncertainty
    Erlebach, Thomas
    Hoffmann, Michael
    Krizanc, Danny
    Mihal'ak, Matus
    Raman, Rajeev
    STACS 2008: PROCEEDINGS OF THE 25TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 2008, : 277 - +