Decentralized pricing in minimum cost spanning trees

被引:11
|
作者
Hougaard, Jens Leth [2 ]
Moulin, Herve [1 ]
Osterdal, Lars Peter [3 ]
机构
[1] Rice Univ, Dept Econ, Houston, TX 77251 USA
[2] Univ Copenhagen, Dept Food & Resource Econ, DK-1958 Frederiksberg C, Denmark
[3] Univ Copenhagen, Dept Econ, DK-1455 Copenhagen K, Denmark
关键词
Pricing rules; Minimum cost spanning trees; Canonical pricing rule; Stand-alone cost; Decentralization; ALLOCATION; GAMES;
D O I
10.1007/s00199-009-0485-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
In the minimum cost spanning tree model we consider decentralized pricing rules, i.e., rules that cover at least the efficient cost while the price charged to each user only depends upon his own connection costs. We define a canonical pricing rule and provide two axiomatic characterizations. First, the canonical pricing rule is the smallest among those that improve upon the Stand Alone bound, and are either superadditive or piece-wise linear in connection costs. Our second, direct characterization relies on two simple properties highlighting the special role of the source cost.
引用
收藏
页码:293 / 306
页数:14
相关论文
共 50 条
  • [11] The saga of minimum spanning trees
    Mares, Martin
    COMPUTER SCIENCE REVIEW, 2008, 2 (03) : 165 - 221
  • [12] CLUSTERING WITH MINIMUM SPANNING TREES
    Zhou, Yan
    Grygorash, Oleksandr
    Hain, Thomas F.
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2011, 20 (01) : 139 - 177
  • [13] On Steiner trees and minimum spanning trees in hypergraphs
    Polzin, T
    Daneshmand, SV
    OPERATIONS RESEARCH LETTERS, 2003, 31 (01) : 12 - 20
  • [14] The cost of the local telecommunication network: a comparison of minimum spanning trees and the HAI model
    Dippon, CM
    Train, KE
    TELECOMMUNICATIONS POLICY, 2000, 24 (03) : 253 - 262
  • [15] ADAPTIVE AND COST-OPTIMAL PARALLEL ALGORITHM FOR MINIMUM SPANNING TREES.
    Akl, S.G.
    Computing (Vienna/New York), 1986, 36 (03): : 271 - 277
  • [16] AN ADAPTIVE AND COST-OPTIMAL PARALLEL ALGORITHM FOR MINIMUM SPANNING-TREES
    AKL, SG
    COMPUTING, 1986, 36 (03) : 271 - 277
  • [17] A polynomial-time approximation scheme for minimum routing cost spanning trees
    Wu, BY
    Lancia, G
    Bafna, V
    Chao, KM
    Ravi, R
    Tang, CAY
    SIAM JOURNAL ON COMPUTING, 2000, 29 (03) : 761 - 778
  • [18] Spanning trees with minimum weighted degrees
    Ghodsi, Mohammad
    Mahini, Hamid
    Mirjalali, Kian
    Gharan, Shayan Oveis
    R., Amin S. Sayedi
    Zadimoghaddam, Morteza
    INFORMATION PROCESSING LETTERS, 2007, 104 (03) : 113 - 116
  • [19] Increasing the weight of minimum spanning trees
    Frederickson, GN
    SolisOba, R
    PROCEEDINGS OF THE SEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1996, : 539 - 546
  • [20] On Sorting, Heaps, and Minimum Spanning Trees
    Navarro, Gonzalo
    Paredes, Rodrigo
    ALGORITHMICA, 2010, 57 (04) : 585 - 620