Decentralized pricing in minimum cost spanning trees

被引:11
|
作者
Hougaard, Jens Leth [2 ]
Moulin, Herve [1 ]
Osterdal, Lars Peter [3 ]
机构
[1] Rice Univ, Dept Econ, Houston, TX 77251 USA
[2] Univ Copenhagen, Dept Food & Resource Econ, DK-1958 Frederiksberg C, Denmark
[3] Univ Copenhagen, Dept Econ, DK-1455 Copenhagen K, Denmark
关键词
Pricing rules; Minimum cost spanning trees; Canonical pricing rule; Stand-alone cost; Decentralization; ALLOCATION; GAMES;
D O I
10.1007/s00199-009-0485-6
中图分类号
F [经济];
学科分类号
02 ;
摘要
In the minimum cost spanning tree model we consider decentralized pricing rules, i.e., rules that cover at least the efficient cost while the price charged to each user only depends upon his own connection costs. We define a canonical pricing rule and provide two axiomatic characterizations. First, the canonical pricing rule is the smallest among those that improve upon the Stand Alone bound, and are either superadditive or piece-wise linear in connection costs. Our second, direct characterization relies on two simple properties highlighting the special role of the source cost.
引用
收藏
页码:293 / 306
页数:14
相关论文
共 50 条
  • [21] Morphology on Graphs and Minimum Spanning Trees
    Meyer, Fernand
    Stawiaski, Jean
    MATHEMATICAL MORPHOLOGY AND ITS APPLICATION TO SIGNAL AND IMAGE PROCESSING, 2009, 5720 : 161 - 170
  • [22] Geometric Minimum Spanning Trees with GEOFILTERKRUSKAL
    Chatterjee, Samidh
    Connor, Michael
    Kumar, Piyush
    EXPERIMENTAL ALGORITHMS, PROCEEDINGS, 2010, 6049 : 486 - 500
  • [23] Distributed verification of minimum spanning trees
    Korman, Amos
    Kutten, Shay
    DISTRIBUTED COMPUTING, 2007, 20 (04) : 253 - 266
  • [24] Minimum Spanning Trees in Temporal Graphs
    Huang, Silu
    Fu, Ada Wai-Chee
    Liu, Ruifeng
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 419 - 430
  • [25] Planar bichromatic minimum spanning trees
    Borgelt, Magdalene G.
    van Kreveld, Marc
    Loffler, Maarten
    Luo, Jun
    Merrick, Damian
    Silveira, Rodrigo I.
    Vahedi, Mostafa
    JOURNAL OF DISCRETE ALGORITHMS, 2009, 7 (04) : 469 - 478
  • [26] Increasing the weight of minimum spanning trees
    Frederickson, GN
    Solis-Oba, R
    JOURNAL OF ALGORITHMS, 1999, 33 (02) : 244 - 266
  • [27] Minimum spanning trees and types of dissimilarities
    Leclerc, B
    EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (2-3) : 255 - 264
  • [28] Galactic Archaeology and Minimum Spanning Trees
    MacFarlane, Ben A.
    Gibson, Brad K.
    Flynn, Chris M. L.
    MULTI-OBJECT SPECTROSCOPY IN THE NEXT DECADE: BIG QUESTIONS, LARGE SURVEYS, AND WIDE FIELDS, 2016, 507 : 79 - 83
  • [29] Finding minimum congestion spanning trees
    Werneck, RFF
    Setubal, JC
    da Conceiçao, AF
    ALGORITHM ENGINEERING, 1999, 1668 : 60 - 71
  • [30] Parametric and kinetic minimum spanning trees
    Agarwal, PK
    Eppstein, D
    Guibas, LJ
    Henzinger, MR
    39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, : 596 - 605