Study on the Extension Models to Handle Missing Values

被引:0
|
作者
Yin, Xuri [1 ]
机构
[1] Inst Automobile Management PLA, Dept Transportat Command, Bengbu 233011, Anhui, Peoples R China
关键词
rough set; incomplete information system; tolerance relation; similarity relation; missing values;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The starting point of the rough sets theory is an observation that objects having the same description are indiscernible with respect to the available information. But the indiscernibility relation may be too rigid in some situations. Therefore several generalizations of the rough sets theory have been proposed. Some of them extend the indiscernibility relation using more general similarity or tolerance relations. In this paper, several extension models of rough set under incomplete information are discussed. Furthermore, the performances of these extended relations are compared also.
引用
收藏
页码:111 / 114
页数:4
相关论文
共 50 条
  • [21] Optimizing regression models for data streams with missing values
    Indrė Žliobaitė
    Jaakko Hollmén
    [J]. Machine Learning, 2015, 99 : 47 - 73
  • [22] Imputing Missing Values in EEG with Multivariate Autoregressive Models
    Kanemura, Atsunori
    Cheng, Yuhsen
    Kaneko, Takumi
    Nozawa, Kento
    Fukunaga, Shuichi
    [J]. 2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 2639 - 2642
  • [23] An Extension of The Handle Addition Theorem
    雷逢春
    [J]. Communications in Mathematical Research, 1995, (02) : 144 - 150
  • [24] Practical guidance to handle missing values in the 25-question Geriatric Locomotive Function Scale (GLFS-25): a simulation study
    Kawahara, Takuya
    Yamada, Keiko
    Terashima, Ryohei
    Takashima, Ikumi
    Tanaka, Sakae
    Ogata, Toru
    Chikuda, Hirotaka
    Miura, Hiromasa
    Nakamura, Kozo
    Ohe, Takashi
    [J]. BMJ OPEN, 2022, 12 (12): : e065607
  • [25] Simple methods to handle missing data
    Bici, Ruzhdie
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL ECONOMICS AND ECONOMETRICS, 2023, 13 (02) : 216 - 242
  • [26] LEARNING DISEASE PROGRESSION MODELS WITH LONGITUDINAL DATA AND MISSING VALUES
    Couronne, Raphael
    Vidailhet, Marie
    Corvol, Jean Christophe
    Lehericy, Stephane
    Durrleman, Stanley
    [J]. 2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1033 - 1037
  • [27] Missing Values in Multiple Joint Inference of Gaussian Graphical Models
    Tozzo, Veronica
    Garbarino, Davide
    Barla, Annalisa
    [J]. INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 497 - 508
  • [28] Classification of missing values in spatial data using spin models
    Zukovic, Milan
    Hristopulos, Dionissios T.
    [J]. PHYSICAL REVIEW E, 2009, 80 (01)
  • [29] Bayesian models for weighted data with missing values: a bootstrap approach
    Goldstein, Harvey
    Carpenter, James
    Kenward, Michael G.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2018, 67 (04) : 1071 - 1081
  • [30] Maximum likelihood missing values estimation in patterns of missing MAR and MCAR in structural models.
    Costas, CSL
    Cabrera, JAH
    Santana, GR
    [J]. PSICOTHEMA, 1997, 9 (01) : 187 - 197