Simple methods to handle missing data

被引:1
|
作者
Bici, Ruzhdie [1 ]
机构
[1] Univ Tirana, Fac Econ, Dept Econ, Tirana, Albania
关键词
simple methods; missing data; handle missing data; imputation; regression; non-response; MULTIPLE IMPUTATION; VALUES;
D O I
10.1504/IJCEE.2023.129986
中图分类号
F [经济];
学科分类号
02 ;
摘要
Missing data are a common problem in big data sets. Specifically, missing data are present in surveys and in different studies, leading to increase of variance and unreliable results. While most of the researchers focus on the analysis of more sophisticated methods, the simplest techniques are not treated in detail. The article explains the theoretical concepts of different types of missing data, the causes of missing data, and analyses methods on how to deal with missing data. The focus is using simple imputation techniques (mean imputation, regression imputation and non-treating missing at all). The analysis is done using Malawi data, IHS5 2019-2020 survey data. In this article, the interest is to know the whole property values (selling and renting) in the country, while the information in these variables is partly not filled. The results show how the different imputation methods influence the results and sometimes the value is predicted from other auxiliary variables.
引用
收藏
页码:216 / 242
页数:28
相关论文
共 50 条
  • [1] Analytic Approaches to Handle Missing Data in Simple Matrix Sampling Planned Missing Designs
    Dai, Ting
    Du, Yang
    Cromley, Jennifer
    Fechter, Tia
    Nelson, Frank
    [J]. JOURNAL OF EXPERIMENTAL EDUCATION, 2024, 92 (03): : 531 - 558
  • [2] Enabling network inference methods to handle missing data and outliers
    Abel Folch-Fortuny
    Alejandro F. Villaverde
    Alberto Ferrer
    Julio R. Banga
    [J]. BMC Bioinformatics, 16
  • [3] Efficient Imputation Methods to Handle Missing Data in Sample Surveys
    G. N. Singh
    Ashok K. Jaiswal
    [J]. Journal of Statistical Theory and Practice, 2022, 16
  • [4] Enabling network inference methods to handle missing data and outliers
    Folch-Fortuny, Abel
    Villaverde, Alejandro F.
    Ferrer, Alberto
    Banga, Julio R.
    [J]. BMC BIOINFORMATICS, 2015, 16
  • [5] Efficient Imputation Methods to Handle Missing Data in Sample Surveys
    Singh, G. N.
    Jaiswal, Ashok K.
    [J]. JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2022, 16 (03)
  • [6] Methods to handle missing values and missing individuals
    Carl Bonander
    Ulf Strömberg
    [J]. European Journal of Epidemiology, 2019, 34 : 5 - 7
  • [7] Methods to handle missing values and missing individuals
    Bonander, Carl
    Stromberg, Ulf
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2019, 34 (01) : 5 - 7
  • [8] A comparison of different methods to handle missing data in the context of propensity score analysis
    Jungyeon Choi
    Olaf M. Dekkers
    Saskia le Cessie
    [J]. European Journal of Epidemiology, 2019, 34 : 23 - 36
  • [9] A comparison of different methods to handle missing data in the context of propensity score analysis
    Choi, Jungyeon
    Dekkers, Olaf M.
    le Cessie, Saskia
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2019, 34 (01) : 23 - 36
  • [10] A comparison of methods to handle missing data in the analysis of an area under the curve outcome
    Hudson, Jemma
    Wood, Jessica
    Watson, Angus
    Cook, Jonathan
    [J]. TRIALS, 2017, 18