Efficient Imputation Methods to Handle Missing Data in Sample Surveys

被引:0
|
作者
Singh, G. N. [1 ]
Jaiswal, Ashok K. [1 ]
机构
[1] Indian Sch Mines, Indian Inst Technol, Dept Math & Comp, Dhanbad 826004, Bihar, India
关键词
Missing data; Mean square error; Imputation method; Population mean; Percent relative efficiency (PRE); RATIO METHOD; ESTIMATORS;
D O I
10.1007/s42519-022-00266-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops a class of modified difference-cum-exponential type imputation methods and corresponding point estimators to estimate the finite population mean in case of missing data problem. We have shown that the proposed strategies use the available auxiliary information effectively and give better results in comparison to some of the existing estimators. The performance of the proposed procedures over others is supplemented by the Monte Carlo simulation technique and presented through tables and graphs. Suitable recommendations are made to survey researchers.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Efficient Imputation Methods to Handle Missing Data in Sample Surveys
    G. N. Singh
    Ashok K. Jaiswal
    [J]. Journal of Statistical Theory and Practice, 2022, 16
  • [2] Some imputation methods for missing data in sample surveys
    Singh, G. N.
    Maurya, S.
    Khetan, M.
    Kadilar, Cem
    [J]. Hacettepe Journal of Mathematics and Statistics, 2016, 45 (06): : 1865 - 1880
  • [3] Efficient random imputation for missing data in complex surveys
    Chen, J
    Rao, JNK
    Sitter, RR
    [J]. STATISTICA SINICA, 2000, 10 (04) : 1153 - 1169
  • [4] Imputation of missing data in surveys
    Rässler, S
    [J]. JAHRBUCHER FUR NATIONALOKONOMIE UND STATISTIK, 2000, 220 (01): : 64 - 94
  • [5] Estimation of Population Mean Using Some Improved Imputation Methods for Missing Data in Sample Surveys
    Pandey, M. K.
    Singh, G. N.
    Zaman, Togla
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024,
  • [6] Missing Data and Imputation Methods
    Schober, Patrick
    Vetter, Thomas R.
    [J]. ANESTHESIA AND ANALGESIA, 2020, 131 (05): : 1419 - 1420
  • [7] Simple methods to handle missing data
    Bici, Ruzhdie
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL ECONOMICS AND ECONOMETRICS, 2023, 13 (02) : 216 - 242
  • [8] A practical comparison of single and multiple imputation methods to handle complex missing data in air quality datasets
    Gomez-Carracedo, M. P.
    Andrade, J. M.
    Lopez-Mahia, P.
    Muniategui, S.
    Prada, D.
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 134 : 23 - 33
  • [9] On the Imputation of Missing Data in Surveys with Likert-Type Scales
    Carpita, Maurizio
    Manisera, Marica
    [J]. JOURNAL OF CLASSIFICATION, 2011, 28 (01) : 93 - 112
  • [10] On the Imputation of Missing Data in Surveys with Likert-Type Scales
    Maurizio Carpita
    Marica Manisera
    [J]. Journal of Classification, 2011, 28 : 93 - 112