Efficient Imputation Methods to Handle Missing Data in Sample Surveys

被引:0
|
作者
Singh, G. N. [1 ]
Jaiswal, Ashok K. [1 ]
机构
[1] Indian Sch Mines, Indian Inst Technol, Dept Math & Comp, Dhanbad 826004, Bihar, India
关键词
Missing data; Mean square error; Imputation method; Population mean; Percent relative efficiency (PRE); RATIO METHOD; ESTIMATORS;
D O I
10.1007/s42519-022-00266-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops a class of modified difference-cum-exponential type imputation methods and corresponding point estimators to estimate the finite population mean in case of missing data problem. We have shown that the proposed strategies use the available auxiliary information effectively and give better results in comparison to some of the existing estimators. The performance of the proposed procedures over others is supplemented by the Monte Carlo simulation technique and presented through tables and graphs. Suitable recommendations are made to survey researchers.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] An Efficient and Effective Model to Handle Missing Data in Classification
    Mehrabani-Zeinabad, Kamran
    Doostfatemeh, Marziyeh
    Ayatollahi, Seyyed Mohammad Taghi
    [J]. BIOMED RESEARCH INTERNATIONAL, 2020, 2020
  • [22] Ensemble imputation methods for missing software engineering data
    Twala, B
    Cartwright, M
    [J]. 2005 11TH INTERNATIONAL SYMPOSIUM ON SOFTWARE METRICS (METRICS), 2005, : 268 - 277
  • [23] A comparison of imputation methods for the consecutive missing temperature data
    Kim, Hee-Kyung
    Kang, In-Kyeong
    Lee, Jae-Won
    Lee, Yung-Seop
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2016, 29 (03) : 549 - 557
  • [24] Application and Comparison of Imputation Methods for Missing Degradation Data
    Fan, Ye
    Sun, Fuqiang
    Jiang, Tongmin
    [J]. ENGINEERING ASSET MANAGEMENT - SYSTEMS, PROFESSIONAL PRACTICES AND CERTIFICATION, 2015, : 1607 - 1614
  • [25] Imputation methods for missing data in educational diagnostic evaluation
    Fernandez-Alonso, Ruben
    Suarez-Alvarez, Javier
    Muniz, Jose
    [J]. PSICOTHEMA, 2012, 24 (01) : 167 - 175
  • [26] New imputation methods for missing data using quantiles
    Munoz, J. F.
    Rueda, M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 232 (02) : 305 - 317
  • [27] Comparison of imputation methods for missing laboratory data in medicine
    Waljee, Akbar K.
    Mukherjee, Ashin
    Singal, Amit G.
    Zhang, Yiwei
    Warren, Jeffrey
    Balis, Ulysses
    Marrero, Jorge
    Zhu, Ji
    Higgins, Peter D. R.
    [J]. BMJ OPEN, 2013, 3 (08):
  • [28] Imputation Methods for Multiple Regression with Missing Heteroscedastic Data
    Asif, Muhammad
    Samart, Klairung
    [J]. THAILAND STATISTICIAN, 2022, 20 (01): : 1 - 15
  • [29] Some Concerns About Imputation Methods for Missing Data
    Toyomoto, Rie
    Funada, Satoshi
    Furukawa, Toshi A.
    [J]. JAMA PSYCHIATRY, 2022, 79 (03) : 270 - 270
  • [30] Evaluating Imputation Methods for Missing Data in a MCI Dataset
    Gomez-Valades Batanero, Alba
    Rincon Zamorano, Mariano
    Martinez Tomas, Rafael
    Guerrero Martin, Juan
    [J]. ARTIFICIAL INTELLIGENCE IN NEUROSCIENCE: AFFECTIVE ANALYSIS AND HEALTH APPLICATIONS, PT I, 2022, 13258 : 446 - 454